23 research outputs found

    Investigation of the Dynamic Buckling of Spherical Shell Structures Due to Subsea Collisions

    Get PDF
    This paper is the first to present the dynamic buckling behavior of spherical shell structures colliding with an obstacle block under the sea. The effect of deep water has been considered as a uniform external pressure by simplifying the effect of fluid–structure interaction. The calibrated numerical simulations were carried out via the explicit finite element package LS-DYNA using different parameters, including thickness, elastic modulus, external pressure, added mass, and velocity. The closed-form analytical formula of the static buckling criteria, including point load and external pressure, has been firstly established and verified. In addition, unprecedented parametric analyses of collision show that the dynamic buckling force (peak force), mean force, and dynamic force redistribution (skewness) during collisions are proportional to the velocity, thickness, elastic modulus, and added mass of the spherical shell structure. These linear relationships are independent of other parameters. Furthermore, it can be found that the max force during the collision is about 2.1 times that of the static buckling force calculated from the analytical formula. These novel insights can help structural engineers and designers determine whether buckling will happen in the application of submarines, subsea exploration, underwater domes, etc

    Molecular engineering to tune the ligand environment of atomically dispersed nickel for efficient alcohol electrochemical oxidation

    Get PDF
    Altres ajuts: ICN2 is funded by the CERCA Programme /Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science Ph.D. program. J.L. is a Serra Húnter Fellow and is grateful to ICREA Academia program.Atomically dispersed metals maximize the number of catalytic sites and enhance their activity. However, their challenging synthesis and characterization strongly complicates their optimization. Here, the aim is to demonstrate that tuning the electronic environment of atomically dispersed metal catalysts through the modification of their edge coordination is an effective strategy to maximize their performance. This article focuses on optimizing nickel-based electrocatalysts toward alcohol electrooxidation in alkaline solution. A new organic framework with atomically dispersed nickel is first developed. The coordination environment of nickel within this framework is modified through the addition of carbonyl (CO) groups. The authors then demonstrate that such nickel-based organic frameworks, combined with carbon nanotubes, exhibit outstanding catalytic activity and durability toward the oxidation of methanol (CHOH), ethanol (CHCHOH), and benzyl alcohol (CHCHOH); the smaller molecule exhibits higher catalytic performance. These outstanding electrocatalytic activities for alcohol electrooxidation are attributed to the presence of the carbonyl group in the ligand chemical environment, which enhances the adsorption for alcohol, as revealed by density functional theory calculations. The work not only introduces a new atomically dispersed Ni-based catalyst, but also demonstrates a new strategy for designing and engineering high-performance catalysts through the tuning of their chemical environment

    Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach

    Get PDF
    ABSTRACT Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing

    Stability analysis of Middle Pleistocene ice-water sediment landslides in the western Sichuan Depression

    No full text
    To study the deformation destruction mechanism and stability of the Middle Pleistocene ice-water sediment landslide in the western Sichuan Depression, this paper takes the K1887+350 landslide in the Chengdu-Yaan section of the G5 Beijing-Kunming Expressway as an example. Engineering geological surveys, physical and mechanical tests, and comprehensive monitoring are applied. Based on the actual deformation of the landslide, the paper analyzes the deformation and destruction mechanism of the landslide and studies the stability of the landslide before and after the reinforcement treatment and comprehensive monitoring technology. The results show that an unfavorable geological structure, slope toe, and precipitation induction are the main reasons for the deformation and instability of the K1887+350 landslide. The swell ability of fine-grained soil in the Middle Pleistocene ice-water sediment layer further reduces the soil shear properties. The long-term infiltration of atmospheric rainfall eventually leads to the superficial creep-pull deformation of ice-water sediments. Surface crack monitoring is an effective way to judge the current state of a mountain and analyze the stability of a landslide

    A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation

    No full text
    When utilizing a finite volume method to predict outburst flood evolution in real geometry, the processing of wet-dry front and dry cells is an important step. In this paper, we propose a new approach to process wet-dry front and dry cells, including four steps: (1) estimating intercell properties; (2) modifying interface elevation; (3) calculating dry cell elevations by averaging intercell elevations; and (4) changing the value of the first term of slope limiter based on geometry in dry cells. The Harten, Lax, and van Leer with the contact wave restored (HLLC) scheme was implemented to calculate the flux. By combining the MUSCL (Monotone Upstream–centred Scheme for Conservation Laws)-Hancock method with the minmod slope limiter, we achieved second-order accuracy in space and time. This approach is able to keep the conservation property (C-property) and the mass conservation of complex bed geometry. The results of numerical tests in this study are consistent with experimental data, which verifies the effectiveness of the new approach. This method could be applied to acquire wetting and drying processes during flood evolution on structured meshes. Furthermore, a new settlement introduces few modification steps, so it could be easily applied to matrix calculations. The new method proposed in this study can facilitate the simulation of flood routing in real terrain

    A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation

    No full text
    When utilizing a finite volume method to predict outburst flood evolution in real geometry, the processing of wet-dry front and dry cells is an important step. In this paper, we propose a new approach to process wet-dry front and dry cells, including four steps: (1) estimating intercell properties; (2) modifying interface elevation; (3) calculating dry cell elevations by averaging intercell elevations; and (4) changing the value of the first term of slope limiter based on geometry in dry cells. The Harten, Lax, and van Leer with the contact wave restored (HLLC) scheme was implemented to calculate the flux. By combining the MUSCL (Monotone Upstream–centred Scheme for Conservation Laws)-Hancock method with the minmod slope limiter, we achieved second-order accuracy in space and time. This approach is able to keep the conservation property (C-property) and the mass conservation of complex bed geometry. The results of numerical tests in this study are consistent with experimental data, which verifies the effectiveness of the new approach. This method could be applied to acquire wetting and drying processes during flood evolution on structured meshes. Furthermore, a new settlement introduces few modification steps, so it could be easily applied to matrix calculations. The new method proposed in this study can facilitate the simulation of flood routing in real terrain

    Cefotaxime Exposure-Caused Oxidative Stress, Intestinal Damage and Gut Microbial Disruption in <i>Artemia sinica</i>

    No full text
    Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture

    Propagation Laws of Blasting Seismic Waves in Weak Rock Mass: A Case Study of Muzhailing Tunnel

    No full text
    In order to study the propagation laws of blasting vibration waves in weak rock tunnels, the longitudinal and circumferential blasting vibration tests in Muzhailing Tunnel were carried out, and the measured data were analyzed and studied using the methods of Sadov’s nonlinear regression, Fourier transform, and Hilbert–Huang transform (HHT) to provide a reference for the optimization of blasting design of Muzhailing Tunnel or similar weak rock tunnels. The results showed that the tangential main frequency decreases rapidly and the radial main frequency decreases slowly with the increase of proportionate charge quantity. Under a certain charge quantity, as the distance from the explosion source increases, the spectrum width of the blasting vibration frequency becomes narrower, the overall energy is more concentrated, and the vibration frequency tends to be closer to the low frequency. At a certain distance from the explosive source, the frequency of blasting vibration decreases gradually, and the amplitude of low-frequency region increases with the increase of charge quantity. The vibration velocity on the left side of the tunnel is larger than that on the right side, and the vibration velocity at the vault and the arch foot of lower bench decreases rapidly, while the vibration velocity at the arch feet of upper bench and middle bench decreases slowly. The vibration frequencies of the left arch foot of the middle bench and the right arch foot of the upper bench are higher than those of other positions, while the frequencies of the left arch foot of the upper bench are the lowest. During tunnel blasting, the energy input to the strata media is mainly concentrated in the stage of the blasting of the cut hole. The blasting has more energy input to the left arch foot of the upper bench and the tunnel vault, which is consistent with the conclusion of frequency analysis

    Temporal Characteristics of Debris Flow Surges

    Get PDF
    Debris flow is one of the most destructive geomorphological events in mountainous watersheds, which usually appears in the form of successive surge waves as observed all over the world. In particular, debris flows in the Jiangjia Gully in southwest China have displayed a great variety of surge phenomena; each debris flow event contains tens or hundreds of separate surges originating from different sources. Therefore, the surge sequence of an event must encode the information of debris flow developing. The unmanned aerial vehicle photos provide an overview of debris flow sources, showing the different potentials of the debris flow and surge sequences present various patterns responding to the rainfall events. Then the variety of rainfalls and material sources determine the diversity of surge sequence. Using time series analysis to the surge discharge sequences, we calculate the Hurst exponent, the autocorrelation function, and the power spectrum exponent and find that all the sequences commonly share the property of long-term memory and these parameters are correlated in an exponential form, with values depending on rainfall patterns. Moreover, all events show a gross trend of discharge decay, despite the local rainfall process, which implies the intrinsic nature of the surge sequence as a systematic behavior of watershed. It is expected that these findings are heuristic for establishing mechanisms of debris flow initiation and evolution in a watershed
    corecore