10 research outputs found

    Mutagenicity induced in Salmonella strains TA98 and TA100 by diphenylthiophenes

    Get PDF
    Mutagenic properties of four different diphenylthiophenes: 3,4-diphenylthiophene, 3,4-di(4'-methylphenyl)thiophene, 3,4-di(4'-methoxyphenyl)thiophene and 3,4-di(4'-pentoxyphenyl)thiophene were investigated applying the Salmonella test. The research was done on two strains of Salmonella Typhimurium: TA98 and TA100, tested in two variants: with (+S9) and without (-S9) enzymatic activation. Only one compound 3,4-di(4'-methylphenyl)thiophene showed mutagenic activity when studied with metabolic activation (+S9) and its mutagenic rate (MR) score was 3.41 for the dose of 10.00µg*plate-1. Other studied compounds did not show any mutagenic activity (+/-S9) and their MR score did not exceed the threshold value of 2.0

    2,4-diphenylthiophene induces mainly base pair mutation in Salmonella Typhimurium

    Get PDF
    Heterocyclic aromatic compounds containing sulfur (S-HET), have been detected in air, soil, marine environment and freshwater sediment. Toxicity and mutagenicity data of this class of substances are scarce. The present study focuses on implications of two aryl thiophenes and their mutagenic properties in Salmonella/microsome test. In our experiment only 2,4-diphenylthiophene showed little mutagenic effect in both variants of activaction (+/-S9) in strain TA100. Thiophene ring joined to K-region of phenanthrene did not change the biological activity of 3,6-dimetoxyphenanthro [9,10-c]thiophene and this compound did not show mutagenic potency

    Assessment of mutagenic activity of methyl- and phenylphenanthrenes based on Salmonella test and micronucleus test

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are widely spread environmental pollutants mainly originating from anthropogenic sources such as fossil fuel combustion, industries, and others. Although a large body of literature exists on the toxicity and carcinogenicity of PAHs, primarily benzo[a]pyrene, toxicity data for phenanthrene deriveratives are very limited. The main aim of the experiment was to investigate if there exists correlation between molecular structure and mutagenic activity of four phenanthrene derivatives: 1 methylphenanthrene, 4 methylphenanthrene, 1 phenylphenanthrene, and 4 phenylphenanthrene. An Ames assay using two strains of histidine dependent Salmonella Typhimurium (TA98 and TA100) was conducted to assess the mutagenic activity of studied compounds both in the presence (+S9) and in the absence (-S9) of an exogenous source of metabolic activation. The compounds were also tested in an in vitro chromosome aberration assay in which V-79 cells were exposed to the phenanthrene derivatives investigated both in the presence and in the absence of metabolic activation. The phenylphenanthrenes showed no mutagenic effect. These compounds occasionally induced significant decrease in the number of revertants in the Ames test. The greatest mutagenic effects were observed for 1 methylphenanthrene after metabolic activation (+S9). In the micronucleus test the greatest mutagenic effect was observed for 4 methylphenanthrene also in the presence of metabolic activation system. The results obtained are comparable to those reported earlier for the methylphenanthrenes

    The use of buccal cells in human biological monitoring

    No full text
    One of the basic methods for determining the degree of environmental risk posed to humans is identification of harmful substances in various environmental elements (air, water, soil, food). In contrast to environmental monitoring human biological monitoring (HBM) enables the estimation of an absorbed dose, general or localized in a specific organ. HBM enables the assessment of exposure to substances which are absorbed by the body via different exposure pathways and with different contaminant carriers. It is based on the measurement of indicators, the so-called biomarkers, in body fluids (blood, urine, saliva, etc.) or in tissues and organs. Biomarkers can be divided into markers of exposure, effects and susceptibility. A particularly useful method is determination of adducts, i.e. carcinogenic compounds (or their metabolites) with proteins or DNA, which are markers of exposure. Biomarkers of biological effects are different cytogenetic changes, including micronuclei. These are extranuclear structures containing fragments of chromatin (arising as a result of DNA breaks) or whole chromosomes (damage to the spindle apparatus during mitosis). Up to now most studies on the DNA adduct levels and micronuclei have been conducted in peripheral lymphocytes. At present, studies using blood, especially in children to restricted to ethical aspects, and therefore tests using epithelial cells from the oral cavity have become more popular. Epithelial cells are the main building material of an epithelial tissue which makes up about 60% of all cells of the human body. The main function of the epithelial tissue is covering and lining of the outer and inner surfaces of the body. Epithelium underwent high specialisation in various parts of the human body, which is associated with its structure and function. Human oral cavity is covered by stratified squamous epithelium, which is comprised of cells called keratinocytes. Oral epithelial cells may differentiate in two directions: towards keratinized or nonkeratinized oral epithelia. In this study, based on our past experience and the available literature, research procedures for the collection of oral epithelial cells and their proper preparation for using them both for the analysis of DNA adducts and micronucleus assay are presented

    Urinary Mercapturic Acids to Assess Exposure to Benzene and Other Volatile Organic Compounds in Coke Oven Workers

    No full text
    Coke production was classified as carcinogenic to humans by the International Agency for Research on Cancer. Besides polycyclic aromatic hydrocarbons, coke oven workers may be exposed to benzene and other volatile organic compounds (VOCs). The aim of this study was to assess the exposure to several VOCs in 49 coke oven workers and 49 individuals living in the same area by determining urinary mercapturic acids. Active tobacco smoking was an exclusion criterion for both groups. Mercapturic acids were investigated by a validated isotopic dilution LC-MS/MS method. Linear models were built to correct for different confounding variables. Urinary levels of N-acetyl-S-phenyl-L-cysteine (SPMA) (metabolite of benzene), N-acetyl-S-(2-hydroxy-1/2-phenylethyl)-L-cysteine (PHEMA) (metabolite of styrene), N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) (metabolite of acrylonitrile), N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine and N-acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine (MHBMA) (metabolites of 1,3-butadiene) were 2–10 fold higher in workers than in controls (p < 0.05). For SPMA, in particular, median levels were 0.02 and 0.31 µg/g creatinine in workers and controls, respectively. Among workers, coke makers were more exposed to PHEMA and SPMA than foremen and engine operators. The comparison with biological limit values shows that the exposure of workers was within 20% of the limit values for all biomarkers, moreover three subjects exceeded the restrictive occupational limit value recently proposed by the European Chemicals Agency (ECHA) for SPMA

    The effect of high polycyclic aromatic hydrocarbon exposure on biological aging indicators.

    No full text
    Background Aging represents a serious health and socioeconomic concern for our society. However, not all people age in the same way and air pollution has been shown to largely impact this process. We explored whether polycyclic aromatic hydrocarbons (PAHs), excellent fossil and wood burning tracers, accelerate biological aging detected by lymphocytes DNA methylation age (DNAmAge) and telomere length (TL), early nuclear DNA (nDNA) hallmarks of non-mitotic and mitotic cellular aging, and mitochondrial DNA copy number (mtDNAcn). Methods The study population consisted of 49 male noncurrent-smoking coke-oven workers and 44 matched controls. Occupational and environmental sources of PAH exposures were evaluated by structured questionnaire and internal dose (urinary 1-pyrenol). We estimated Occup_PAHs, the product of 1-pyrenol and years of employment as coke-oven workers, and Environ_PAHs, from multiple items (diet, indoor and outdoor). Biological aging was determined by DNAmAge, via pyrosequencing, and by TL and mtDNAcn, via quantitative polymerase chain reaction. Genomic instability markers in lymphocytes as target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)–DNA adduct], genetic instability (micronuclei), gene-specific (p53, IL6 and HIC1) and global (Alu and LINE-1 repeats) DNA methylation, and genetic polymorphisms (GSTM1) were also evaluated in the latent variable nDNA_changes. Structural equation modelling (SEM) analysis evaluated these multifaceted relationships. Results In univariate analysis, biological aging was higher in coke-oven workers than controls as detected by higher percentage of subjects with biological age older than chronological age (AgeAcc ≥ 0, p = 0.007) and TL (p = 0.038), mtDNAcn was instead similar. Genomic instability, i.e., genotoxic and epigenetic alterations (LINE-1, p53 and Alu) and latent variable nDNA_changes were higher in workers (p < 0.001). In SEM analysis, DNAmAge and TL were positively correlated with Occup_PAHs (p < 0.0001). Instead, mtDNAcn is positively correlated with the latent variable nDNA_ changes (p < 0.0001) which is in turn triggered by Occup_PAHs and Environ_PAHs. Conclusions Occupational PAHs exposure influences DNAmAge and TL, suggesting that PAHs target both nonmitotic and mitotic mechanisms and made coke-oven workers biologically older. Also, differences in mtDNAcn, which is modified through nDNA alterations, triggered by environmental and occupational PAH exposure, suggested a nuclear-mitochondrial core-axis of aging. By decreasing this risky gerontogenic exposure, biological aging and the consequent age-related diseases could be prevented. *Correspondence
    corecore