77 research outputs found

    Spin-Orbit-Induced Orbital Excitations in Sr2RuO4 and Ca2RuO4: A Resonant Inelastic X-ray Scattering Study

    Get PDF
    High-resolution resonant inelastic X-ray scattering (RIXS) at the oxygen K-edge has been used to study the orbital excitations of Ca2RuO4 and Sr2RuO4. In combination with linear dichroism X-ray absorption spectroscopy, the ruthenium 4d-orbital occupation and excitations were probed through their hybridization with the oxygen p-orbitals. These results are described within a minimal model, taking into account crystal field splitting and a spin-orbit coupling \lambda_{so}=200~meV. The effects of spin-orbit interaction on the electronic structure and implications for the Mott and superconducting ground states of (Ca,Sr)2RuO4 are discussed.Comment: accepted in PRB 201

    Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering

    Get PDF
    We report the observation of multiple phonon satellite features in ultra thin superlattices of form nnSrIrO3_3/mmSrTiO3_3 using resonant inelastic x-ray scattering. As the values of nn and mm vary the energy loss spectra show a systematic evolution in the relative intensity of the phonon satellites. Using a closed-form solution for the cross section, we extract the variation in the electron-phonon coupling strength as a function of nn and mm. Combined with the negligible carrier doping into the SrTiO3_3 layers, these results indicate that tuning of the electron-phonon coupling can be effectively decoupled from doping. This work showcases both a feasible method to extract the electron-phonon coupling in superlattices and unveils a potential route for tuning this coupling which is often associated with superconductivity in SrTiO3_3-based systems.Comment: 4 pages, 5 figure

    Ion pairing versus water structure modifications

    Get PDF
    The effect of monovalent cations (Li+, K+, NH4 +, Na +) on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS) of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations

    Charge ordering in Ir dimers in the ground state of Ba5_5AlIr2_2O11_{11}

    Full text link
    It has been well established experimentally that the interplay of electronic correlations and spin-orbit interactions in Ir4+^{4+} and Ir5+^{5+} oxides results in insulating Jeff_{\rm eff}=1/2 and Jeff_{\rm eff}=0 ground states, respectively. However, in compounds where the structural dimerization of iridum ions is favourable, the direct Ir dd--dd hybridisation can be significant and takes a key role. Here, we investigate the effects of direct Ir dd--dd hybridisation in comparison with electronic correlations and spin-orbit coupling in Ba5_5AlIr2_2O11_{11}, a compound with Ir dimers. Using a combination of abab initioinitio many-body wave function quantum chemistry calculations and resonant inelastic X-ray scattering (RIXS) experiments, we elucidate the electronic structure of Ba5_5AlIr2_2O11_{11}. We find excellent agreement between the calculated and the measured spin-orbit excitations. Contrary to the expectations, the analysis of the many-body wave function shows that the two Ir (Ir4+^{4+} and Ir5+^{5+}) ions in the Ir2_2O9_9 dimer unit in this compound preserve their local Jeff_{\rm eff} character close to 1/2 and 0, respectively. The local point group symmetry at each of the Ir sites assumes an important role, significantly limiting the direct dd--dd hybridisation. Our results emphasize that minute details in the local crystal field (CF) environment can lead to dramatic differences in electronic states in iridates and 5dd oxides in general.Comment: 5 pages with 3 figure

    Damped spin excitations in a doped cuprate superconductor with orbital hybridization

    Get PDF
    A resonant inelastic x-ray scattering study of overdamped spin excitations in slightly underdoped La2−x Srx CuO4 (LSCO) with x = 0.12 and 0.145 is presented. Three high-symmetry directions have been investigated: (1) the antinodal (0,0) → ( 1 ,0), (2) the nodal (0,0) → ( 1 , 1 ), and (3) the zone-boundary direction 2 4 4 ( 1 1 1 2 ,0) → ( 4 ,4 ) connecting these two. The overdamped excitations exhibit strong dispersions along (1) and (3), whereas a much more modest dispersion is found along (2). This is in strong contrast to the undoped compound La2CuO4 (LCO) for which the strongest dispersions are found along (1) and (2). The t − t i − t ii − U Hubbard model used to explain the excitation spectrum of LCO predicts—for constant U/t —that the dispersion along (3) scales with (t i/t )2. However, the diagonal hopping t i extracted on LSCO using single-band models is low (t i/t ∼ −0.16) and decreasing with doping. We therefore invoked a two-orbital (dx2 −y2 and dz2 ) model which implies that t i is enhanced. This effect acts to enhance the zone-boundary dispersion within the Hubbard model. We thus conclude that hybridization of dx2 −y2 and dz2 states has a significant impact on the zone-boundary dispersion in LSCO

    Coupled Cu and Mn charge and orbital orders in YBa₂Cu₃O₇/Nd 0.65 (Ca 1-y Sr y ) 0.35 MnO₃ multilayers

    Get PDF
    The observation of a charge density wave in the underdoped cuprate high Tc superconductors (Cu-CDW) raised a debate about its relationship with superconductivity. In bulk YBa2Cu3O7−δ the Cu-CDW is incipient and mainly pinned by defects. Nevertheless, a large magnetic field can induce a true long-range Cu- CDW order as it suppresses superconductivity. An enhanced Cu-CDW order was also observed in YBa2Cu3O7/La2/3Ca1/3MnO3 multilayers. Here, we show that the magnitude of the Cu-CDW in YBa2Cu3O7−δ / Nd0.65(Ca1-ySry)0.35MnO3 multilayers can be varied by adjusting the strength of the manganite charge and orbital order via the Sr content (tolerance factor). Furthermore, we resolve the reconstruction of the crystal field levels of the interfacial Cu ions that are also affected by the manganite charge and orbital order. This tuneable interfacial coupling and Cu- CDW in YBa2Cu3O7−δ can be used for studying the relationship between the Cu- CDW and superconductivity and, possibly, for inducing new intertwined quantum states
    • …
    corecore