11 research outputs found

    CLSI – EUCAST: Comparison of antibiotic-susceptibility profile of Enterobacteriaceae of animal origin according to the standards

    Get PDF
    Antimicrobial resistance is a relevant “One Health” issue that shows the need of comparison of isolates of different origins. In this way, guidelines for antimicrobial-resistance evaluation in animals are relevant in relation to human sources. This work aims to compare antimicrobial-resistance results of animal isolates considering CLSI and EUCAST guidelines. The comparison shows considerable differences in the results, which include antibiotics used as primary options in hospital infections. EUCAST showed the higher number of samples with resistance profiles than CLSI that indicates a more efficient scenario to the EUCAST to screen antibiotic-resistant bacteria. EUCAST was more consonant to the expected phenotype for ESBL producers, with higher index of resistance to oxyimino-beta-lactam antibiotics. The study shows that there are differences in the interpretative results using different guidelines, where the susceptibility test results concerning Enterobacteriaceae of animal origin are not always coincident in CLSI and EUCAST. EUCAST has proved to be the most reliable alternative for profile screening of antibiotic resistance, when compared to CLSI. We might say the same with respect to the ESBL-producing Enterobacteriaceae, in which EUCAST has proved to be more efficient about the demonstration of expected resistance profiles for the ESBL producers. These differences show that guideline selection might influence the therapeutic option

    Worldwide Disseminated IncX4 Plasmid Carrying mcr-1 Arrives to Wild Mammal in Portugal

    Get PDF
    The mcr-1 gene spread is worldwide recognized as a public health threat at multidrug-resistant infections therapy level. Here, we report for the first time, to the best of our knowledge, the detection of the globally distributed IncX4 plasmid carrying mcr-1 (mcr-1/IncX4) in Escherichia coli isolated from a wild mammal in Portugal and Europe. This plasmid was found in a ST533 E. coli isolate with a multidrug-resistant profile, virulence potential, and possibly phylogenetically related to human isolates. Our work contributes to highlight the importance of antimicrobial resistance (AMR) surveillance in wildlife, an important compartment of the whole ecosystem often overlooked in the fight against AMR. IMPORTANCE Colistin resistance mediated by plasmids is recognized worldwide as an emergency problem connected with the whole ecosystem, since is well described in the interface of the human-animal-environment. The plasmid IncX4 is reported as one of the most prevalent plasmids harboring the gene mcr-1. On an European scale the plasmid IncX4 carrying mcr-1 has been described in humans, the environment, and animals, including wildlife, but only in wild birds. This study shows the first report of the plasmid IncX4 harboring mcr-1 in a wild mammal in Portugal and Europe, identified in a ST533 E. coli commensal that is, curiously, more related to isolates from humans than from livestock. Our findings show that the plasmid IncX4 harboring mcr-1 is well established in a colistin resistance drive embracing the whole ecosystem.info:eu-repo/semantics/publishedVersio

    A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases

    Get PDF
    Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.info:eu-repo/semantics/publishedVersio

    Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates

    Get PDF
    The environment is considered a major reservoir of antimicrobial resistant microorganisms (AMR) and antimicrobial resistance genes (ARG). Colistin, a “last resort” antibiotic, is used for the treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. The global dissemination of mobile colistin resistance genes (mcr) in natural and non-natural environments is a major setback in the fight against antimicrobial resistance. Hitherto, there is a limited number of studies screening this resistance determinant in bacteria from wildlife. In this study, we describe for the first time the detection of plasmid-mediated colistin resistance in Escherichia coli from wild ungulates in Portugal, which are also widely distributed across Europe. This information is critical to identify the importance of ungulates in the dissemination of resistant bacteria, and their corresponding genes, across the environment. Here, 151 resistant-Enterobacteriaceae isolated from 181 samples collected from different wild ungulate species throughout Portugal were screened for mcr genes. Four mcr-1-positive Escherichia coli were detected from four fallow deer individuals that were sampled in the same hunting ground. These four isolates harboured mcr-1-related IncP plasmids belonging to sequencing types ST155, ST533 and ST345 (n = 2), suggesting bacterial and/or plasmid circulation. All mcr-1-positive E. coli also showed other resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. All mcr-1-positive E. coli show additional resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. Our findings are upsetting, highlighting the global dissemination of colistin resistance genes in the whole ecosystem, which, under the One Health framework, emphasizes the urgent need for effective implementation of AMR surveillance and control in the human-animal-environment interfaces.info:eu-repo/semantics/publishedVersio

    Temporal and geographical research trends of antimicrobial resistance in wildlife - A bibliometric analysis

    Get PDF
    Antimicrobial resistance (AMR) is a complex and global problem. Despite the growing literature on AMR in the medical and veterinary settings, there is still a lack of knowledge on the wildlife compartment. The main aim of this study was to report the global trends in AMR research in wildlife, through a bibliometric study of articles found in the Web of Science database. Search terms were "ANTIMICROBIAL" OR "ANTIBIOTIC" AND "RESISTANT" OR "RESISTANCE" and "WILDLIFE" "MAMMAL" "BIRD" "REPTILE" "FERAL" "FREE RANGE". A total of 219 articles were obtained, published between 1979 and 2019. A rising interest in the last decades towards this topic becomes evident. During this period, the scientific literature was distributed among several scientific areas, however it became more multidisciplinary in the last years, focusing on the "One Health" paradigm. There was a geographical bias in the research outputs: most published documents were from the United States, followed by Spain, Portugal and the United Kingdom. The most productive institutions in terms of publication number were located in Portugal and Spain. An important level of international collaboration was identified. An analysis of the main keywords showed an overall dominance of "AMR", "E. coli", "genes", "prevalence", "bacteria", "Salmonella spp." and "wild birds". This is the first study providing a global overview of the spatial and temporal trends of research related to AMR in wildlife. Given the growth tendency over the last years, it is envisaged that scientific production will expand in the future. In addition to offering a broad view of the existing research trends, this study identifies research gaps both in terms of geographical incidence and in relation to unexplored subtopics. Unearthing scientific areas that should be explored in the future is key to designing new strategic research agendas in AMR research in wildlife and to inform funding programs.info:eu-repo/semantics/publishedVersio

    The role of spray-drying atmosphere on fridericia chica (bonpl.) L.G. Lohmann standardized extract production for wound healing activity

    Get PDF
    Fridericia chica (Bonpl.) L.G. Lohmann (synonym Arrabidaea chica Verlot) is widely used in Brazilian folk medicine. Considering overcoming pitfalls of scaling up production of plant extracts, herein the effects of N2 atmosphere for extract spray-drying process is reported. Samples were monitored by in vitro antioxidant activity and microbiological evaluation. The drying atmosphere influenced 3-deoxyanthocyanines content when using air as atomizing gas, decreasing carajurin (37.5%) content with concomitant increase in luteolin yield (24.1%). Both drying processes preserved the pharmacological activity. In the cell migration test with HaCaT cells, the extract dried under air flow (5 μg/mL) promoted wound closure by 78% (12 hours) whereas the extract dried using N2 flow promoted 49% (12 hours), with 98% closure (12 hours) for the positive control. The antimicrobial evaluation for Staphylococcus aureus did not differ within drying atmospheres, with MIC (minimum inhibitory concentration) at 0.39 mg/mL. Therefore, the drying process reported herein did not interfere with the biological activity’s outcome.The authors A.L.T.G.R.and M.A.F thank CNPq for research productivity fellowship. The authors also thank the Chemical, Biological, and Agricultural Pluridisciplinary Research Center (CPQBA/Unicamp) for the laboratory infrastructure. Sao Paulo Research Foundation (FAPESP). This work was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil, Financing Code 001) and the National Council for Scientific and Technological Development (CNPq, Brazil, grant numbers # 132448/2016-5, # 132207/2017-6, # 429463/2018-9).Peer reviewe

    First Global Report of Plasmid-Mediated mcr-1 and Extended-Spectrum Beta-Lactamase-Producing Escherichia coli from Sheep in Portugal

    No full text
    Resistances to extended-spectrum cephalosporins (ESC) and colistin are One Health issues since genes encoding these resistances can be transmitted between all sectors of the One Health concept, i.e., human, animal, and the environment. Among food-producing animals, sheep farming has long been overlooked. To fill in this knowledge gap, we looked for ESC- and colistin resistance in 21 faecal samples collected from sheep in one farm in the south of Portugal. ESC-resistant isolates were selected on MacConkey agar plates supplemented with cefotaxime. Susceptibility testing was performed by the disk-diffusion method according to CLSI, while colistin MIC was determined by broth microdilution. ESC- and colistin-resistance genes were identified by PCR, and the clonality of all isolates was assessed by XbaI-PFGE. The replicon content was determined by PCR according to the PCR-based replicon typing (PBRT) scheme. Sixty-two non-duplicate ESC-resistant E. coli isolates were identified, which all presented an extended-spectrum beta-lactamase (ESBL) phenotype, mostly due to the presence of CTX-M genes. One CTX-M-1-producing E. coli was concomitantly colistin-resistant and presented the plasmid-mediated mcr-1 gene. Nearly all isolates showed associated resistances to non-beta-lactam antibiotics, which could act as co-selectors, even in the absence of beta-lactam use. The results showed a high proportion of ESBL-producing E. coli in sheep faeces. Their dissemination was very dynamic, with the spread of successful clones between animals, but also a large diversity of clones and plasmids, sometimes residing in the same animal. This study highlights the need for global surveillance in all food-producing sectors, in order to avoid the dissemination of genes conferring resistance to last-resort antibiotics in human medicine

    A high-risk carbapenem-resistant Pseudomonas aeruginosa clone detected in red deer (Cervus elaphus) from Portugal

    No full text
    Pseudomonas aeruginosa is a ubiquitous bacterium, successfully exploiting a variety of environmental niches due to its remarkable metabolic versatility. The World Health Organization classifies P. aeruginosa as a “priority pathogen” due to its a great ability to overcome the action of antimicrobials, including carbapenems. Hitherto, most studies have focused on clinical settings from humans, but much less on animal and environmental settings, particularly on wildlife. In this work, we report the isolation of a carbapenem-resistant Pseudomonas aeruginosa strain recovered from the faeces of a red deer adult female sampled in a humanized area. This isolate was obtained during a nationwide survey on antimicrobial resistance in wildlife aimed to determine the occurrence of carbapenem-resistant bacteria among 181 widely distributed wild ungulates. This P. aeruginosa isolate was found to be a high-risk clone, belonging to the sequence type (ST) 274. The genomic analysis of P. aeruginosa isolate UP4, classified this isolate as belonging to serogroup O3, which was also found to harbour the genes blaPAO, blaPDC-24, blaOXA-486 (encoding resistance to beta-lactams), aph(3′)-IIb (aminoglycosides resistance), fosA (fosfomycin resistance) and catB7 (chloramphenicol resistance). Antimicrobial susceptibility screening, according to EUCAST, showed resistance to imipenem and intermediate resistance to meropenem and doripenem. To our knowledge, this is the first description of carbapenem-resistant P. aeruginosa in deer in Europe. Our results highlight the importance of wild ungulates either as victims of human activity or amplifiers of AMR, either way with potential impacts on animal, human and ecosystem health, since excretion of AMR bacteria might directly or indirectly contaminate other animals and the surrounding environment, perpetuating the spill-over and chain dissemination of AMR determinants.info:eu-repo/semantics/publishedVersio

    KPC-Producing <i>Enterobacterales</i> from Douro River, Portugal—Persistent Environmental Contamination by Putative Healthcare Settings

    No full text
    Carbapenemase-producing Enterobacterales (CPE) are a growing concern, representing a major public health threat to humans, especially in healthcare settings. In the present study, we evaluated the persistent contamination by carbapenem-resistant Enterobacterales in water from Douro River, Portugal. KPC-producing Enterobacterales were detected in five water samples separated chronologically by 15 days each. Susceptibility testing was performed by disk-diffusion-method according to Clinical and Laboratory Standards Institute (CLSI), phenotypic carbapenemase activity was evaluated by carbapenem inactivation method, presumptive identification of the isolates was performed by CHROMagar orientation and confirmed by API-20E. Carbapenemase genes were screened by PCR and the clonality of all isolates was assessed by XbaI-Pulsed Field Gel Electrophoresis (PFGE). Fifteen KPC-producing Enterobacterales isolates were selected, identified as multidrug-resistant and showed a resistance profile to non-beta-lactam antibiotics: sulfamethoxazole + trimethoprim (7/15), ciprofloxacin (3/15), fosfomycin (3/15) and chloramphenicol (2/15). Isolates were identified as (6) Escherichia coli and (9) Klebsiella pneumoniae. Our results suggest a punctual contamination with KPC-producing Enterobacterales continued through the time. The absence of clonality between the isolates suggests a circulation of mobile genetic element harbouring KPC gene in the origin of contamination. This work provides a better understanding on the impacts of water pollution resulting from human activities on aquatic environments
    corecore