8 research outputs found

    Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    Get PDF
    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults.This work was supported by the following grants and fellowships: Biotechnology and Biological Sciences Research Council, UK (BB/M012494/1) to V.K.R. and (BB/G00711/X/1) to V.K.R. and C.G.; and a Research Council UK Academic Fellowship to M.L.H. R.L. is supported by EU-FP7 BLUEPRINT. S.E.O. is supported by the British Heart Foundation (FS/12/64/30001) and the Medical Research Council (MC_UU_12012/4). This research used Queen Mary’s MidPlus computational facilities, supported by Queen Mary University of London Research-IT and funded by Engineering and Physical Sciences Research Council grant EP/K000128/1. We thank King’s College London FWB Genomics Centre and Barts and The London Genome Centre for performing high-throughput sequencing.This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aaf704

    Genetic variation at mouse and human ribosomal DNA influences associated epigenetic states

    Get PDF
    Background: Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. Results: Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. Conclusions: Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases

    SPIRE - combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial

    Get PDF
    Background Urothelial bladder cancer (UBC) accounts for 10,000 new diagnoses and 5000 deaths annually in the UK (Cancer Research UK, http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer, Cancer Research UK, Accessed 26 Mar 2018). Cisplatin-based chemotherapy is standard of care therapy for UBC for both palliative first-line treatment of advanced/metastatic disease and radical neoadjuvant treatment of localised muscle invasive bladder cancer. However, cisplatin resistance remains a critical cause of treatment failure and a barrier to therapeutic advance in UBC. Based on supportive pre-clinical data, we hypothesised that DNA methyltransferase inhibition would circumvent cisplatin resistance in UBC and potentially other cancers. Methods The addition of SGI-110 (guadecitabine, a DNA methyltransferase inhibitor) to conventional doublet therapy of gemcitabine and cisplatin (GC) is being tested within the phase Ib/IIa SPIRE clinical trial. SPIRE incorporates an initial, modified rolling six-dose escalation phase Ib design of up to 36 patients with advanced solid tumours followed by a 20-patient open-label randomised controlled dose expansion phase IIa component as neoadjuvant treatment for UBC. Patients are being recruited from UK secondary care sites. The dose escalation phase will determine a recommended phase II dose (RP2D, primary endpoint) of SGI-110, by subcutaneous injection, on days 1–5 for combination with GC at conventional doses (cisplatin 70 mg/m2, IV infusion, day 8; gemcitabine 1000 mg/m2, IV infusion, days 8 and 15) in every 21-day cycle. In the dose expansion phase, patients will be randomised 1:1 to GC with or without SGI-110 at the proposed RP2D. Secondary endpoints will include toxicity profiles, SGI-110 pharmacokinetics and pharmacodynamic biomarkers, and pathological complete response rates in the dose expansion phase. Analyses will not be powered for formal statistical comparisons and descriptive statistics will be used to describe rates of toxicity, efficacy and translational endpoints by treatment arm. Discussion SPIRE will provide evidence for whether SGI-110 in combination with GC chemotherapy is safe and biologically effective prior to future phase II/III trials as a neoadjuvant therapy for UBC and potentially in other cancers treated with GC

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

    Get PDF
    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure

    Early life diet conditions the molecular response to post-weaning protein restriction in the mouse.

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were madeBACKGROUND: Environmental influences fluctuate throughout the life course of an organism. It is therefore important to understand how the timing of exposure impacts molecular responses. Herein, we examine the responses of two key molecular markers of dietary stress, namely variant-specific methylation at ribosomal DNA (rDNA) and small RNA distribution, including tRNA fragments, in a mouse model of protein restriction (PR) with exposure at pre- and/or post-weaning. RESULTS: We first confirm that pre-weaning PR exposure modulates the methylation state of rDNA in a genotype-dependent manner, whereas post-weaning PR exposure has no such effect. Conversely, post-weaning PR induces a shift in small RNA distribution, but there is no effect in the pre-weaning PR model. Intriguingly, mice exposed to PR throughout their lives show neither of these two dietary stress markers, similar to controls. CONCLUSIONS: The results show that the timing of the insult affects the nature of the molecular response but also, critically, that 'matching' diet exposure either side of weaning eliminates the stress response at the level of rDNA methylation and small RNA in sperm.AFD is funded by an MRC Studentship (MR/K501372/1) and a Life Sciences Initiative Small Grant and the work was supported by a Biotechnology and Biological Sciences Research Council, UK (BB/M012494/1) grant awarded to VKR
    corecore