22 research outputs found

    An Integrated Mass-Spectrometry Pipeline Identifies Novel Protein Coding-Regions in the Human Genome

    Get PDF
    Background: Most protein mass spectrometry (MS) experiments rely on searches against a database of known or predicted proteins, limiting their ability as a gene discovery tool.Results: Using a search against an in silico translation of the entire human genome, combined with a series of annotation filters, we identified 346 putative novel peptides [False Discovery Rate (FDR), <5%] in a MS dataset derived from two human breast epithelial cell lines. A subset of these were then successfully validated by a different MS technique. Two of these correspond to novel isoforms of Heterogeneous Ribonuclear Proteins, while the rest correspond to novel loci.Conclusions: MS technology can be used for ab initio gene discovery in human data, which, since it is based on different underlying assumptions, identifies protein-coding genes not found by other techniques. As MS technology continues to evolve, such approaches will become increasingly powerful

    Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast

    Get PDF
    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance

    Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.

    Get PDF
    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance

    Fitness Landscape of the Fission Yeast Genome.

    Get PDF
    The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3'- and 5'-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution

    Functional and regulatory profiling of energy metabolism in fission yeast

    Get PDF
    Background: The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. Results: We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. Conclusions: This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast

    Exon level integration of proteomics and microarray data

    No full text
    Abstract Background Previous studies comparing quantitative proteomics and microarray data have generally found poor correspondence between the two. We hypothesised that this might in part be because the different assays were targeting different parts of the expressed genome and might therefore be subjected to confounding effects from processes such as alternative splicing. Results Using a genome database as a platform for integration, we combined quantitative protein mass spectrometry with Affymetrix Exon array data at the level of individual exons. We found significantly higher degrees of correlation than have been previously observed (r = 0.808). The study was performed using cell lines in equilibrium in order to reduce a major potential source of biological variation, thus allowing the analysis to focus on the data integration methods in order to establish their performance. Conclusion We conclude that part of the variation observed when integrating microarray and proteomics data may occur as a consequence both of the data analysis and of the high granularity to which studies have until recently been limited. The approach opens up the possibility for the first time of considering combined microarray and proteomics datasets at the level of individual exons and isoforms, important given the high proportion of alternative splicing observed in the human genome.</p

    Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription

    Get PDF
    Regulació gènicaRegulación genéticaGene RegulationMono-ubiquitylation of histone H2B (H2Bub1) and phosphorylation of elongation factor Spt5 by cyclin-dependent kinase 9 (Cdk9) occur during transcription by RNA polymerase II (RNAPII), and are mutually dependent in fission yeast. It remained unclear whether Cdk9 and H2Bub1 cooperate to regulate the expression of individual genes. Here, we show that Cdk9 inhibition or H2Bub1 loss induces intragenic antisense transcription of ∼10% of fission yeast genes, with each perturbation affecting largely distinct subsets; ablation of both pathways de-represses antisense transcription of over half the genome. H2Bub1 and phospho-Spt5 have similar genome-wide distributions; both modifications are enriched, and directly proportional to each other, in coding regions, and decrease abruptly around the cleavage and polyadenylation signal (CPS). Cdk9-dependence of antisense suppression at specific genes correlates with high H2Bub1 occupancy, and with promoter-proximal RNAPII pausing. Genetic interactions link Cdk9, H2Bub1 and the histone deacetylase Clr6-CII, while combined Cdk9 inhibition and H2Bub1 loss impair Clr6-CII recruitment to chromatin and lead to decreased occupancy and increased acetylation of histones within gene coding regions. These results uncover novel interactions between co-transcriptional histone modification pathways, which link regulation of RNAPII transcription elongation to suppression of aberrant initiation.National Institutes of Health [R35GM127289 to R.P.F.]; Canadian Institutes of Health Research [MOP-130362 to J.C.T.]; Natural Sciences and Engineering Council of Canada [RGPIN 03661-15 to J.C.T.]; Wellcome Trust Senior Investigator Award [095598/Z/11/Z to J.B.]; Swedish Research Council [VR2015-02312]; Cancerfonden [CAN2016/576 awards to P.S.]; J.C.T. is supported by a fellowship from Fond de recherche Quebec Santé [33115]. Funding for open access charge: National Institutes of Health (USA); Canadian Institutes of Health Research

    Each point corresponds to a transcript matched by at least one peptide and at least one array probeset

    No full text
    X and Y axes: fold-changes between MCF7 and MCF10A for the microarray-probeset and quantitative-peptide data, respectively. When more than one matching peptide/probeset was found, the mean value was calculated. Error bars represent one standard deviation. r: Pearson correlation. n: number of data points.<p><b>Copyright information:</b></p><p>Taken from "Exon level integration of proteomics and microarray data"</p><p>http://www.biomedcentral.com/1471-2105/9/118</p><p>BMC Bioinformatics 2008;9():118-118.</p><p>Published online 25 Feb 2008</p><p>PMCID:PMC2267708.</p><p></p

    Each point corresponds to an exon matched by at least one peptide and at least one array probeset

    No full text
    X and Y axes: fold-changes between MCF7 and MCF10A for the microarray probeset and quantitative peptide data, respectively. When more than one matching peptide/probeset was found, the mean value was calculated. Error bars represent one standard deviation. r: Pearson correlation. n: number of data points.<p><b>Copyright information:</b></p><p>Taken from "Exon level integration of proteomics and microarray data"</p><p>http://www.biomedcentral.com/1471-2105/9/118</p><p>BMC Bioinformatics 2008;9():118-118.</p><p>Published online 25 Feb 2008</p><p>PMCID:PMC2267708.</p><p></p
    corecore