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Abstract

Background: Most protein mass spectrometry (MS) experiments rely on searches against a database of known or predicted
proteins, limiting their ability as a gene discovery tool.

Results: Using a search against an in silico translation of the entire human genome, combined with a series of annotation
filters, we identified 346 putative novel peptides [False Discovery Rate (FDR),5%] in a MS dataset derived from two human
breast epithelial cell lines. A subset of these were then successfully validated by a different MS technique. Two of these
correspond to novel isoforms of Heterogeneous Ribonuclear Proteins, while the rest correspond to novel loci.

Conclusions: MS technology can be used for ab initio gene discovery in human data, which, since it is based on different
underlying assumptions, identifies protein-coding genes not found by other techniques. As MS technology continues to
evolve, such approaches will become increasingly powerful.
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Introduction

Since its release in 2001, the draft sequence of the human

genome [1] has been revised numerous times and genome

annotation continues to evolve [2]. Even so, the total number of

genes is still unknown, and the estimated number (20,000–25,000)

remains in dispute [3–7]. This lack of a definitive catalogue applies

not only to genome databases, but also to the secondary protein

and transcript databases upon which so many molecular biology

assays are based. For example, mass spectrometry techniques that

rely on a search against a database of known proteins will fail to

identify previously unseen peptides, while the majority of

microarrays, which are designed against a database of known or

predicted transcripts, are unable to profile transcription that

occurs outside those regions for which their probes were designed.

With the advent of next generation sequencing [8,9], tiling

[6,10–13] and exon arrays [14], which feature probes targeting

many more speculative areas of the genome [15,16], numerous

studies have found evidence for transcription outside known or

predicted protein coding genes [6,10–13,17]. Much of this has

been attributed to novel non-coding RNA, such as miRNAs [18],

or to non-functional transcription, but, given the lack of a

definitive catalogue of all human proteins, it is likely that at least

some of this novel RNA is translated into previously unreported

proteins [19].

High throughput tandem mass spectrometry (MS/MS) has

become a favoured method for the identification of peptides and

their cognate proteins in a complex protein mixture [20–25]. Such

an approach normally leads to the production of thousands of

spectra, each corresponding to the ion signature of a peptide,

which are then identified using a database search algorithm such

as Sequest [21], Mascot [24], or ProteinPilot [26]. These programs

attempt to assign a peptide sequence to a spectrum, while ranking

and scoring each assignment, and all assume that the peptide/

protein exists in the database. This is a fundamental constraint

that restricts the analysis to known and predicted proteins, and

prohibits the discovery of novel coding regions.

A significant aspect of many proteomics experiments is the

existence of ‘orphan’ peptides, those that have an experimental

mass, but for which a sequence could not be assigned. A number

of groups [27–34] have hypothesized that some of these may be

due to the existence of novel protein sequences that are not

currently represented in the databases, and have attempted to

predict novel proteins by expanding the protein database used to

identify proteins by tandem Mass Spectrometry (MS/MS) by

translating the entire genome in all three forward and reverse

reading frames [27,28,31–34]. The approach accepts the genetic

code, but ignores the conventional signals of gene structure, such

as initiation codon and known exon/intron boundaries. In so

doing, more segments of the raw DNA sequence are represented

by putative translation products, allowing greater coverage.

However, two significant disadvantages are associated with this

technique. Firstly, the extended search requires a much larger

database of putative sequences, with a corresponding rise in the
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amount of time and space required to analyse the data, and

secondly, the extended database will also contain a large number

of spurious sequences, some of which may match the experimental

data by chance [22,31,32,35]. This magnifies the false positive

rate, making it difficult to distinguish real matches from chance

occurrences; already an issue with existing database searches.

Nevertheless, the approach has been applied successfully to plant

[27,28] and bacterial [34] genomes, allowing the detection of novel

coding regions, the confirmation of gene predictions and the

refinement of genome annotations. Recently, Tanner et al. [30]

generated an expanded repertoire of predicted proteins using

translations of EST and gene prediction data that were then used

successfully to identify novel loci in human, while Menon et al. [29]

were able to apply a similar approach in mouse. However, neither

considered an unbiased full translation of the entire genome, in part

because of the problem of controlling the False Discovery Rate

(FDR) resulting from analyses against larger genomes.

Here we describe a novel pipeline that employs a straightfor-

ward search against a six-frame translation of the human genome

(Figure 1). We were able to identify and confirm experimentally

that the pipeline does indeed identify novel proteins in high

throughput MS/MS data. The pipeline uses a concatenated

reverse database [36] to estimate the FDR and incorporates

filtering steps that target pseudogenes, repeat elements and

sequence conservation across genomes to find additional support

for the assignments made by the database search algorithm.

Database searching was performed by first generating the full 6-

frame translated database and an equivalent reverse decoy

database [36]. Since it was not possible to concatenate these two

databases and perform a single search, due to the amount of

memory required by the software [30], we instead split the data by

chromosome into 23 separate target and decoy databases. A series

of pre-screening searches was then conducted on each individual

database, to yield a set of target and decoy hits for each

chromosome. In this way non-matching peptides were identified

and eliminated from the analysis, making it possible to

dramatically reduce the search space. Importantly, since decoy

hits are also considered at this stage, it is possible to perform this

data reduction step whilst preserving the information required for

a reliable estimation of the FDR.

All hits resulting from this initial search were then combined

with the Celera protein database to generate a single concatenated

resource containing all possible spectrum-matching target and

decoy peptides. All spectra were then searched for a second time

against this reduced database in order to allow peptide

assignments to be performed in the presence of other, competing,

Figure 1. A pipeline to identify peptides originating from uncharacterised proteins using LC MS/MS data. Data are subjected first to
identification using ProteinPilot and then filtered according to genome annotation. A subset of predicted novel peptides were then confirmed by
addition MS/MS.
doi:10.1371/journal.pone.0008949.g001
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sequences. This is necessary since some spectra that match well in

one chromosome may have a better match to a different sequence

on another chromosome. These occurrences cannot be identified

unless all candidate sequences are considered in a single batch.

Similarly, some peptides that match to the decoy database may

also have a better match to the target database. Again, this cannot

be considered unless decoy and target sequences are searched

together [36].

Candidate novel peptides resulting from this second search were

then taken through for further analysis and validation, and the

FDR estimated using the relative proportion of target and decoy

hits, as previously described [36–38].

Results

We evaluated the pipeline by applying it to a dataset produced

using two human cell lines, MCF7 and MCF10A, a breast cancer

and a non-tumourigenic epithelial cell line, respectively. Following

sample preparation and processing, the resultant MS/MS data

were searched once against the Celera protein database [39], and

once against our novel six-frame translation database, using

ProteinPilot.

6-Frame Proteogenomics Predicts Additional Protein
Coding Loci in the Human Genome

Of the 8,349 putative hits identified following the pre-screening

search, 4,603 were shared with the Celera database peptides

(6,219), displaying 74% correspondence at the peptide level

between the two database searches (Table 1). A total of 1,616

peptides found by the Celera search could not be identified using

the initial six-frame searches, but, as expected, a considerable

fraction of these (1,110) were found to span exon junctions (see

methods), and a further 167 were assigned by the six-frame search,

but were assigned a confidence of less than 95% by ProteinPilot.

When these 1,277 peptides are accounted for, correspondence at

the peptide level increases to 94.54%.

A total of 3,746 matches with no high-confidence Celera

equivalent were identified in the six-frame search. Of these, 119

matched to multiple sites in the putative translated genome, and

85 were found to have low confidence (,95%) matches in the

Celera search. Both these sets of peptides were excluded from

further analysis, leaving 3,542 peptide sequences (3,503 six-frame

accessions) for further examination.

In the second database search, the full 118,184 MS/MS spectra

were then compared to a single amalgamated database containing

all Celera database entries (187,748), the 3,503 putative novel

protein sequences, and all possible decoy hit accessions (3,581).

Following this search, 3,162/3,542 putative novel peptides were

removed, leaving 380 peptides, identified with . = 95% confi-

dence at a FDR of 4.97% (estimated using the reverse decoy hits

[40]). Only these peptides were considered further.

These 380 peptides were then positioned relative to known

genes using X:Map, a genome annotation database [41]. Peptides

were classified as ‘intergenic’ (279 peptides), ‘intronic’ (53), and

‘exonic’ (48), based on their location relative to known protein

coding features, as defined by Ensembl (version 47) [42]. Each

exon is associated with a reading frame in which translation is

expected to occur. Exonic peptides were further characterized as

‘in-frame’ when they occurred in the annotated reading frame

(34), and ‘not in-frame’ when they matched the genome within an

exon, but in a different reading frame to that annotated (9).

Generally, ‘in frame’ peptides correspond to matches against

known proteins, and are therefore of less interest when searching

for novelty; they were not investigated further here. Finally,

peptides found to extend the 39 or 59 ends (2 and 3, respectively) of

an exon were labelled ‘exon-extending’ (Table 2).

Putative novel peptides were then subjected to a set of filters

based on the location of repeat regions, pseudogenes and areas

with high evolutionary conservation score (computed using GERP

scoring across 10 species [43]). Peptides originating from more

highly conserved regions that were annotated neither as repeat

regions nor as pseudogenes were considered to be more likely to be

biologically relevant (122 peptides).

Confirmation of Proteogenomic Predictions by
Comparison with Synthetic Peptide Spectra

When only 99% confidence peptides are considered, 63 are

found by the pipeline (FDR: 2.7%). A subset of these (highest-

confidence) peptides was selected for experimental validation. An

underlying principle of protein MS is the assumption that under

the same conditions the same peptide should fragment in a similar

way, and thus yield a similar ion spectrum. The fragmentation

pattern of a synthetic peptide should therefore be highly similar to

that of a ‘‘real’’ peptide with the same sequence, making it possible

to use synthetic peptides as a source of validatory spectra when

seeking confirmation of a peptide assignment by MS/MS. Many

of the spectra derived from complex mixtures feature ions that are

not accounted for by the best sequence match. Often these are the

result of the fragmentation of two different precursors simulta-

neously, leading to the production of chimeric spectra. Fragment

ions that were carried over from a previous collision, background

ions and/or inorganic compounds can also lead to additional

peaks. When a single peptide is synthesized and analysed by MS/

MS, its spectrum is less likely to contain these additional ions. In

Table 1. Summary of the results obtained from LC-MS/MS analysis of the MCF7 and MCF10A cell lines.

Search/Level
Peptides . = 95%
confidence

Peptides . = 99%
confidence

Peptides . = 0%
confidence

Spectra . = 0%
confidence

% of spectra
analysed

Celera 6,219 (FDR = 0.19%) 5,537 (FDR = 0.11%) 14,204 65,896 55.75

Six-frame 8,349 (FDR = 40.03%) 5,316 (FDR = 19.04%) 33,066 63,451 53.68

Overlap 4,603 4,048 6,983 50,694 N/A

Celera unique 1,616 1,489 7,221 15,202 N/A

Six-frame unique 3,746 1,268 26,083 12,757 N/A

Results of the initial pre-screening search in which all 118,184 spectra were searched against the individual chromosome specific six-frame databases and associated
decoy databases. Data were also searched separately against the Celera database using ProteinPilot (ABI). For all searches FDR was estimated using the reverse decoy
hits, as described in the methods.
doi:10.1371/journal.pone.0008949.t001
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addition, post-translational modifications (PTMs) can also change

the fragmentation pattern of a given peptide. 8 peptides for

additional MS/MS validation, plus 2 positive controls, were

chosen, by manual inspection of their spectra, to minimise these

issues.

Synthetic peptides with the same sequences as the candidates

were produced and subjected to MS/MS analysis in the usual way.

7 out of 8 of the synthetic peptides (plus both positive controls)

were identified, at 99% confidence, with the same sequences as the

‘‘real’’ peptides, when searched using ProteinPilot against the

augmented database. An additional comparison between the real

and synthetic peptides, in which the number of common ions was

used as a metric of similarity was also performed. FDR was

determined empirically using a search of random, unrelated

spectra (see methods), providing an estimate of the likelihood of a

similar set of matches occurring by chance (Figure S1). At a 5%

FDR, corresponding to a score threshold of 34.6, the same 7

sequences were found to be similar to their synthetic counterparts,

along with both positive controls (Figures S1,S2).

Two of these 7 peptide sequences had high sequence similarity

(BLAST [44]) to 2 distinct forms of Heterogeneous nuclear

ribonucleoproteins [HNRNPL and HNRNPA1 like, chromosome

19 and 2, respectively (Table 3)]. HNRNPs play a major role in

the packaging, processing, transporting and function of mRNA

[45] as well as the modulation of splice site selection. One of these

peptides (Peptide 3; Table 3 QPPLLGDHPAEYGEGR), also

confirmed at the transcript level by RT-PCR (Figure S3), extends

the 39 end of exon 7 (ENSE00000704494) in HNRNPL,

contributing an additional 3 amino acids to the protein sequence

(Figure 2). Note that these additional 3 amino acids also provide

the appropriate terminal arginine required for enzymatic cleavage

by trypsin; the shorter form of the peptide would not have been

identified. This exact peptide sequence was found to exist in both

mouse and rat protein homologues, and alignments of these

sequences found that the specified intron is retained in both

organisms, encoding an additional 37 additional amino acids

(Figure 2).

The second peptide (Peptide 5; Table 3) fell within a region

showing sequence similarity to HNRNPA1 (Table 2). This peptide

prediction is located within a regional Genscan [46] (Figure 3),

suggesting an open reading frame at this locus. A BLAST search

and 3D homology modelling analysis predicts that the region

encodes 271 amino acids (3 exons) that include the RNA binding

domains necessary for a functional HNRNPA1 like protein (Figure

S4), and transcript expression at this locus was again confirmed by

RT-PCR. This second peptide was pseudo-tryptic (i.e.

SSGLYGGGGQSFDKP), and the known HNRNPA1 protein

was also identified in this dataset (ROA1_HUMAN), and a similar

peptide sequence (SSGPYGGGGQYFAKPR) also contributed to

the identification of ROA1_HUMAN. Given the similarity

between both sequences it might appear at first sight as though

the novel peptide might be erroneous. However, even though both

Table 2. Pipeline predictions.

Peptide classification
Peptides . = 95%
(2nd search)

Pseudogene
filter

Repeat
filter

Conservation
SR. = 0

. = 99%
confidence cutoff

Peptides
synthesized

Intergenic 279 269 157 101 56 7

Intronic 53 53 30 15 2 0

Exonic ‘Not in Frame’ 9 8 7 3 3 0

Exonic ‘Extending’ 5 4 3 3 2 1

Total 346 334 197 122 63 8

All 118,184 spectra were searched against a concatenated database comprising all Celera accessions, target and decoy hits from the pre-screening search (Table 1).
Peptides that were uniquely identified by the six-frame search are referred as ‘orphan’ peptides. These peptides were classified according to their genomic position.
SR – averaged conserved GERP score for the region from which the peptide originated. FDR was computed using the reverse decoy hits, as described in the methods.
doi:10.1371/journal.pone.0008949.t002

Table 3. Pipeline predictions confirmed by comparisons to spectra obtained from synthetic peptides.

Peptide
classification Location Sequence

Max
common ions

Up/down
MCF10A

Conservation
SR

1 Positive control Chr:8 (21) 145066695–145066727 AGLVGPEFHEK 78 No 25.68

2 Positive control Chr:17 (+1) 77639940–77639975 DNLEFFLAGIGR 137 Down 33.06

3 Exonic extend Chr:19 (21) 44022955–44023004 QPPLLGDHPAEYGEGR 126 No 64.54

4 Intergenic Chr:3 (+1) 197481979–197482005 TQALVEILK 81 No 9.03

5 Intergenic Chr:2 (+1) 194761171–194761215 SSGLYGGGGQSFDKP 56 Down 0

6 Intergenic Chr:20 (21) 46619533–46619600 SLATFQGQFNSWAGGPGSFVER 103 No 0

7 Intergenic Chr:8 (+1) 21164240–21164278 TVGSRAATFVAGR 52 No 0

8 Intergenic Chr:17 (+1) 74766590–74766619 GAVPASLAPK 47 Up 0

9 Intergenic Chr:7 (+1) 43117591–43117632 GSVRKGLGTPSGIR 52 No 0

FDR calculated following 7,000 independent comparisons between a randomly chosen set of 10 different spectra (70,000 different spectra in total) and the synthetic
spectra (8,672). RT PCR-reverse transcriptase PCR; Up/down regulation in MCF10A/MCF7 cell lines was determined using iTRAQ reporters in two experimental and a
single control quantitation channels.
doi:10.1371/journal.pone.0008949.t003
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sequences are very similar, the database searches are performed by

comparing ion signatures, not amino acid sequences. It is thus

important to consider differences at the spectrum level, rather than

simply considering their alignments. A manual fragmentation

simulation of both peptide sequences shows that they would

produce very different fragmentation patterns (data not shown). In

addition, both peptides were independently identified (by different

spectra) in the database search, providing evidence in favour of

both their existence in the proteome. It is unlikely that this peptide

was simply an artefact.

The remaining 5 novel peptides (Table 3) displayed some weak

similarity (expectation value.1) to human peptides, raising the

possibility that some of the peptides could actually be explained by

polymorphisms. However, in all cases the alignments either

Figure 2. Location and nature of novel exon-39 extending peptide in HNRNPL. Top: Location of peptide relative to exons. (Blue rectangle:
gene; brown rectangles: transcripts; red/white rectangles: exons; red: coding, white: UTR). Bottom: alignment between NP_001128232.1 (hnRNPL
isoform a, Rattus norvegicus) and HNRPL_HUMAN , showing location of the candidate peptide, and the retained intron found in the rat, but not the
human, sequence.
doi:10.1371/journal.pone.0008949.g002

Figure 3. Location and nature of novel integenic peptide relative to Genscan prediction. Top: the peptide identified by the pipeline is
classified as intronic, but is within the Genscan prediction GENSCAN00000020420. Bottom: the predicted protein is similar to hnRNPA1
(RA1L3_HUMAN; BLAST; Expect = 1e233; 73% Identity).
doi:10.1371/journal.pone.0008949.g003
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featured multiple mismatches, gaps, or lacked the necessary tryptic

site(s) at the N or C termini. These differences would result in

significantly different ion signatures, again making it unlikely that

the matches are artefactual.

The lack of any strong similarity to known, well characterized,

proteins (although there is cross-species sequence conservation at

the DNA level) means that further characterization of these

peptides would need to be performed experimentally. Seeking

additional confirmation at the transcript level for these peptides is

more challenging than for the two peptides described above,

because the lack of additional data describing known or predicted

gene-structures makes it difficult to position primers appropriately.

Nevertheless, one of these sequences (Peptide 4; Table 3) was

pursued further by RT-PCR (Figure S3), and transcription at that

locus was again confirmed.

Discussion

The incompleteness of current protein databases acts as a

limiting factor when seeking novelty with MS/MS data. This can

be minimized by a search against all possible protein products,

generated by translating the entire genome in all reading frames,

but is hampered by the corresponding increase in the False

Discovery Rate, which makes it difficult to distinguish real events

from chance occurrences [36]. The FDR is further magnified if it

is necessary to search the target (and decoy) databases in batches,

since the same spectrum can be assigned multiple times to different

peptides. Here, for example, the FDR following the pre-screening

stage was estimated at ,40%, dropping to 5.0% following the

second database search; a consequence of the removal of 90% of

the candidate peptides by competition. Note that the shrinkage of

the database is not the reason for this drop, since all possible decoy

hits were included in the second search. This shows that it is

possible to perform useful 6-frame translated searches against the

entire human genome whilst controlling the FDR to reasonable

levels; further supported by the successful confirmation of a subset

of the candidate peptides by a different MS/MS approach.

We also considered using mRNA data to confirm the existence

of transcription at each putative locus of translation. Two

additional filters were applied based on Expressed Sequence Tag

(EST) data and Affymetrix Exon arrays (data not shown). The

former provides evidence that transcription has been previously

observed at a given location, while the latter arrays feature many

probesets targeting both EST predictions and those arising from in

silico methods such as Genscan [46]. These can then be used to

confirm transcription in mRNA samples paired with those

subjected to MS/MS. When exon array and EST filtering were

applied to the orphan peptide set, these two steps resulted in all but

one of the orphan peptides being rejected, including all 8 that were

taken through to experimental validation. This reflects the fact

that both exon arrays and ESTs remain biased towards the better

characterized (and, generally, protein coding) regions of the

genome. As an extra validation step, we therefore used RT-PCR

to confirm transcription for a subset of peptides, but this is not

scalable across a large dataset. Clearly, technologies such as tiling

arrays or next-generation sequencing may be used to provide a

more global assessment of transcription [47], but since a

substantial proportion of the human genome is now thought to

be transcribed, these data may not prove to be particularly

discriminatory. Additional resources might therefore be better

directed at downstream validation, rather than further upstream

filtering, or at increasing the coverage of the MS/MS data, since

even if transcription is found at a given locus, this not conclusive

evidence of translation.

Current mass spectrometry techniques are unable to resolve all

proteins in a complex mixture, such as that arising from higher

eukaryotic cells, and are biased towards high abundance peptides

[48]. A recent meta-analysis of 2D proteomic data performed by

Petrak et al. [49] revealed that similar lists of differentially

expressed proteins are repeatedly reported by different research-

ers, regardless of the underlying experimental conditions, and

similar concerns have also been voiced with respect to LC-MS/

MS analyses, despite the greater proteome coverage that they offer

[50,51]. Thus, even though the dataset described here is likely to

contain mostly high abundance, housekeeping proteins, we

successfully identified and validated a novel isoform, a new gene

paralogue and five putative novel coding regions, and predicted

many more with high statistical significance. Given not only the

stringency of the pipeline but also the cutoffs chosen for the

validation by synthetic peptide, it is likely that the majority of these

other peptides predicted by the analysis pipeline may also be real.

These results are also interesting because the first dogma of

molecular biology – that DNA makes RNA makes protein – has

dominated in the methodologies used to identify novel proteins,

which are almost always inferred from known or predicted gene or

transcript sequences. Advances in mass spectrometry offer an

alternate route, in which novel genes can instead be inferred

directly from experimental evidence at the peptide level. This

relies on a different set of hypotheses and assumptions, and thus a

different pattern of true and false positives. With stringent filters

and appropriate validation, our methods successfully identify novel

proteins that are not found using conventional techniques. As

technology continues to improve, allowing the detection of lower-

abundance peptides, such an approach will become increasingly

powerful.

Methods

Protein Preparation and iTRAQ Labelling
26106 cells were washed with PBS, centrifuged at 5006g for

5 minutes and the dried pellet lysed in 0.5 M triethylammonium

bicarbonate +0.05% (w/v) SDS. Protein was digested and iTRAQ

labelled as described previously [52]. Briefly, 100 mg protein in

20 ml was reduced with 2 ml 50 mM tris-(2-carboxyethyl)-phosphine

(TCEP) at 60uC for one hour and then alkylated with 1 ml of

200 mM methylmethanethiosulphate (MMTS) in isopropanol at

room temperature for 10 minutes. Protein was digested by addition

of 10 ml trypsin at 0.5 mg/ml and incubated at 37uC overnight. One

unit of iTRAQ reagent (Applied Biosystems, Warrington, UK) was

thawed and reconstituted in 70 ml of ethanol, with vortexing for

1 minute. The reagent solution was added to the digest and

incubated at room temperature for one hour. Labelling reactions

were then pooled prior to analysis. Two technical replicates were

performed. MCF7 cells were labelled with 114 and 116 reporter

ions, MCF10A with 115 and 117. Both cell lines were obtained

from ATCC (LGC Standards, Middlesex, UK).

Liquid Chromatography and Mass Spectrometry
Pooled labelled peptides were analysed as previously described

[52]. Briefly, peptides were fractionated on an SCX cartridge

(Applied Biosystems) in 10 mM K2HPO4 (pH 2.7)+20% ACN,

with KCl concentration increasing in 50 mM steps from 50 mM

to 500 mM. Peptide fractions were dried, and re-suspended in

240 mL 2% v/v ACN/0.1% v/v formic acid. 60 mL was loaded

onto a 15cm reverse phase C18 column (75 mm i.d.) using an LC

Packings UltiMateTM pump and peptides separated on a 80 min

gradient from 5% to 40% v/v ACN/0.1% v/v formic acid on-line

to a QSTARH XL mass spectrometer.
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Six-Frame Translation Database
The complete human genomic sequence (Homo_sapiens.

NCBI36.47) was translated in all reading frames. The translation

of the genomic DNA started from the first, second and third

nucleotide on each strand of each chromosome and ended

whenever a stop codon was encountered. Triplets were translated

according to the standard genetic code (IUPAC), to assign a one

letter symbol for each amino acid and a ‘*’ symbol for a stop codon.

A unique accession number that could be recognised by ProteinPilot

(e.g. 1P_HUMAN) was assigned to each protein sequence and the

genomic coordinates were recorded. Triplets containing ambiguity

codes (i.e. ‘N’, ‘H’, ‘R’ etc.) were ignored, as were sequences shorter

than six amino acids in length, and those which did not contain

Arginine (R) or Lysine (K) (R and K not followed by Proline are the

trypsin cleavage sites). Chromosome Y was not included (i.e. breast

cancer cell lines). A total of 170,642,968 putative proteins were

generated using Ensembl release 47.

Relative Quantification and Peptide Assignments
iTRAQ data analysis and peptide/protein database searches

were performed using ProteinPilot (version 2.0, Applied Biosys-

tems, Warrington, UK). The uninterpreted spectra (118,184) were

searched once against the human Celera protein database:

human_KBMS5.0.20050302.fasta (187,748 proteins), and once

against the six-frame database (one chromosome at a time). Only

peptide matches with a confidence . = 95% were considered. The

proteolytic cleavage was set to trypsin and the program was

configured to report methylmethanethiosulphate (MMTS) as a

fixed modification.

Identification of Orphan Peptides
The list of Celera . = 95% confidence peptides that contrib-

uted to the protein identification (contribution.0) were compared

to the complete list of the six-frame (regardless of their confidence/

contribution), and vice versa. This accounts for cases when a given

peptide sequence was assigned in both searches but the percentage

confidence was different. Only exact matches were considered and

isoforms, sequence differences between databases, polymorphism

etc., were not included. A similar comparison based on the spectra

rather than on peptides was also performed.

Celera Peptide Mappings
The list of Celera peptides was locally BLAST searched (–M

PAM30 –e 100 –W 2) against the human Ensembl [42] peptide

database (Homo_sapiens.NCBI36.47.pep.all.fa) in order to re-

trieve Ensembl transcript IDs. This approach indirectly compares

the Celera and the Ensembl databases. Minor discrepancies

between the two databases therefore resulted in a small number of

peptides not being mapped. The high e-value set for the BLAST

search ensured that almost all possible hits were obtained.

Nevertheless, only exact peptide matches of the same length as

the query length were extracted. Finally, a BioPerl Ensembl API

script [53] was used to pull out the peptides’ genomic coordinates.

For peptides located within exon-exon junctions, two sets of

coordinates were retrieved. Similarly, a peptide sequence that

exists in more than one place in the genome (e.g. shared between

protein families), would also have more than one set of

coordinates. These ‘multi-target’ peptides were excluded from

further analysis.

Mapping of the Six-Frame Peptides
In order to retrieve the exact genomic coordinates of the six-

frame peptides, the parent putative proteins (ORFs) were retrieved

from the six-frame database using fastacmd accompanied by the

six-frame unique ID. Since the genomic coordinates were initially

recorded during the database construction, it was possible to

calculate the exact genomic position of the peptides simply by

positioning the peptide sequences within their parent protein

sequences. The BioPerl and Ensembl API script were also to

confirm the exact location of the peptides, as described above.

This accounts for cases when ProteinPilot assigned more than one

unique accession to a given peptide (i.e. mapped to more than one

place in the genome).

The Exon Junction Database
The database was constructed using a list of all protein coding

transcripts, as retrieved from X:Map. The exon sequences, along

with the coordinates of their transcripts were retrieved. The 59 and

the 39 sequence ends (54bp) of the exons were extracted,

concatenated, shuffled and translated in three frames (the strand is

known), so as to include all possible splice variants junctions. In cases

where the exon ends were shorter than 54 bp the entire exon

sequence was included. In addition, for 59-terminal exons, only 39

ends were used, whereas for 39-terminal exons the 59 ends were used.

Analysis of Celera Unique Peptides
A considerable fraction of Celera peptides could not be

identified by the search against the six-frame database. These

were mapped back to their genomic coordinates, as before, while

junction peptides were identified if two sets of coordinates were

retrieved (in the same locus), or if they perfectly matched exon-

junction database entries, following a BLAST search.

Positioning & Grouping of Six-Frame Unique Peptides
‘Orphan’ peptides were positioned within the genome structure

and classified according to their location using the exonmap

library [41] in R/BioConductor. The exonmap R package

supports a series of queries that enable direct mapping between

probesets, exons, genes and transcripts to be made. The peptide

coordinates were used to querying X:Map as follows: Firstly, each

set of coordinates was used to search for a gene that may be found

within its range. Secondly, each set of coordinates was used to

search for an exon that may be found within its range. Then, the

differences between the two search results and the initial list were

identified, allowing peptides to be classified as exonic, intronic and

intergenic. The ‘multi-targeted’ peptides were excluded from

further analysis.

Exonic peptides were allocated to three subgroups (‘In-Frame’,

‘Not in frame’, ‘Extending’), based on whether they occur on the

same frame as the exon from which they were originated (based on

whether the peptide could be positioned within the translated

transcript), or alternatively whether they extend their correspond-

ing exon coordinates based comparison, Perl script).

Pseudogene Filtering
The peptide’s genomic sequences were retrieved using a BioPerl

Ensembl API script. Thereafter, these sequences were BLAST

searched against the manually curated human cDNA pseudogene

database (Homo_sapiens_VEGA_jan_cdna_pseudo.fa, download-

ed from ftp://ftp.sanger.ac.uk/pub/vega/). Only exact matches

(peptides with 100% identity, same length, and same strand as the

query sequence) were filtered out.

Microarray Data Analysis
Briefly, 6 CEL files representing 6 chips (3 MCF7 and 3

MCF10A) were analysed. All analyses were performed using
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BioConductor/R [54] and the stored procedures found in the

exonmap package , as described in [14]. Raw expression data

were processed in R using the ‘affy’ BioConductor library.

Expression summarisation was performed using RMA [55] with

chip definitions supplied via a custom CDF file, as described in

[14]. All data have been submitted to GEO (accession:

GSE19154).

EST Evidence
The peptide’s genomic sequences were retrieved as above and

BLAST searched against the human EST database (human_est.

fasta, downloaded from ftp://ftp.ncbi.nlm.nih.gov/BLAST/db/

FASTA/). Only exact matches (peptides with 100% identity,

same length, and same strand as the query sequence) were

retained.

Repeat Region Filtering
The peptides’ genomic coordinates were used to query the

Ensembl API in order to exclude peptides that originated from

repetitive regions.

Conservation Across 10 Species
The peptides genomic coordinates were used to query the

Ensembl API in order to assess the conservation of the peptides

among different species (human, chimp, rhesus, cow, dog,

mouse, rat, opossum, platypus, and chicken). Ensembl provides

a nucleotide level GERP (Genomic Evolutionary Rate Profiling)

scoring [43], that reflects the amount of inferred substitution,

which in turn allows the identification of constrained elements.

The substitution rate for each nucleotide was calculated as

R =S(Expected-Observed) and a SR (sum of scores across the

peptide) was calculated for each peptide and divided by its

length. If scoring at that region was not available, R was

reported as 0 and therefore SR = 0, while a positive SR should

be expected in conserved regions and vice versa. In order to

choose an appropriate cutoff value, 5,537 real exonic (Celera

peptides with .99% confidence, FDR = 0.11%) and the

‘intergenic’ group of six-frame peptides (1,441 peptides with

.99% confidence and FDR = 19.04%) were assessed and both

distributions of SR values were plotted (all SR = 0 were

removed). A non-parametric test (Wilcox rank sum test,

wilcox.test command, R package) was performed to examine

whether there was a difference between the two distributions,

and a cutoff was chosen accordingly.

Reverse Database and False Discovery Rate Calculations
Reverse database searches were performed using the PSPEP

program [40] (Proteomics System Performance Evaluation

Pipeline, ABI) that operates together with ProteinPilot. Since

PSPEP estimates the false discovery rate within the concatenated

database rather than the FDR solely within the target database, we

estimated the FDRs under a given confidence threshold (95% &

99%) for each target database as discussed in [37,38] FDR = (False

positives/(False Positives + True Positives))*100 [37,38].

Second Database Search Against Modified Celera
Database

A database search was performed (settings as above) against a

modified Celera database that includes, all Celera database entries

(187,748), the 3,542 putative novel protein sequences (3,503

accessions) and all decoy hits reported by ProteinPilot (regardless

of their assigned confidence) following the pre-screening stage

(3,581 accessions).

Peptide Synthesis
Following re-identification of the putative novel peptides by the

second database search, a manual examination of the corre-

sponding 40 spectra was carried out. In total, 8 peptides were

chosen along with 2 positive controls and synthesized (Euro-

gentec, minimum of 5mg of each with .70% purity). The

peptides were iTRAQ labelled and subjected to LC-MS/MS

analysis using the same settings as before, leading to the

generation of 8,672 spectra.

Comparisons of Fragmentation Patterns
Both the synthetic (8,672) and the original 118,184 spectra

were converted to mgfs format (Mascot generic file) using

ProteinPilot. Thereafter, the 10 original spectra (8 putative

novel peptides and 2 positive controls) were extracted and

compared to the synthetic spectra (4,531 scores). Pairs were

scored by counting the number of common ions (excluding

iTRAQ ions and potential ammonium ions, m/z.160). In

order to generate random scores, 10 spectra (different from the

original 10 peptide sequences) were randomly chosen from a

pool of 118,105 spectra. This step was repeated 7,000 times

(without replacement). Therefore, 70,000 random spectra were

compared to the synthetic spectra (59.23% of the dataset),

generating 518,112 random similarity scores. This was then

used as a null distribution from which the FDR was calculated,

as in [56].

Homology Modelling and Structural Alignment
The protein sequence obtained from Genscan prediction

(GENSCAN00000020420) was used for homology modelling in

order to predict its 3D structure. This was performed using Swiss

model [57] (automated mode settings), followed by structural

alignment to its template using PyMOL [58].

Reverse Transcription PCR
Total RNA was isolated from MCF7 and MCF10a cells using

the Qiagen RNeasy kit (Qiagen, Sussex, UK). Genomic DNA was

digested using RNase-free DNase (Qiagen, Sussex, UK). Reverse

transcription was performed using Taqman reverse transcription

reagents (Applied Biosystems, Foster City, CA, USA). The

reaction included 1 mg total RNA, 2.5 mM random hexamers,

Taqman RT buffer, 5.5 mM Magnesium Chloride, 500 mM each

dNTP, 0.4 U/ml RNase inhibitor, 1.25 U/ml Multiscribe reverse

transcriptase and RNase-free water to a total volume of 100 ml.

The mixture was incubated at 25uC for 10 min, 48uC for 30 min

and 95uC for 5 min.

PCR was performed using 1 mM each primer, 100 ng cDNA,

100 mM each dNTP, 2.5 U Taq polymerase, polymerase buffer

and RNase-free water to a volume of 25 ml. Cycling conditions

included denaturation at 94uC for 5 min, 35 cycles of 1)

denaturation at 94uC for 30 sec 2) annealing at 60uC for 30 sec

and 3) extension at 72uC for 1 min, finishing with a final extension

of 72uC for 5 min. PCR fragments were resolved using the

MultiNA Microchip Electrophoresis System (Shimadzu Biotech,

Milton Keynes, UK).

Primer sequences: Control set (Left -TCCTCAAGTTTCCG-

CACAGT Right- GGCTGCCCATTTTGTATTGA, Product

size - 82), Peptide 5 set (Left –TCAGTGGTCTTGGTGGCTTT,

Right – CCACCATAGAGGCCAGAACT, Product size – 208),

Peptide 3 set (Left – GCAGCAACCCCAACAAAC, Right –

CCCTGCCCTCACCATATTCT, Product size – 75), Peptide 4

set (Left – CATTGGGGTGGGAAAAAGTT, Right – GGC-

CATTGTTGCACAGAGAG, Product size – 187).
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Supporting Information

Figure S1 Comparison between real and random spectra pairs.

A) The distribution of the number of matching ions between

random pairs (red, 518,112 scores) and ‘‘real’’ pairs (blue, 4,531

scores). The locations of the spectra identified in this assay are

indicated by their reference number in table 3; two positive

controls (1–2) and all putative novel peptides (3–9). B) The

calculated FDR against the number of matching ions between

spectra pairs.

Found at: doi:10.1371/journal.pone.0008949.s001 (0.13 MB TIF)

Figure S2 Comparison between real and synthetic peptide

sequences. Spectra from real (top) and synthetic peptides (bottom)

for two positive controls (1–2) and all putative novel peptides (3–9)

Found at: doi:10.1371/journal.pone.0008949.s002 (1.22 MB TIF)

Figure S3 Reverse Transcription PCR confirms transcript

expression at loci corresponding to novel peptides. Primer sets

specific to peptides 3, 4, 5, Table 3, were used to positively identify

gene transcription by RT-PCR. The ribosomal protein L14

(RL14_HUMAN) was used as a positive control. Reverse

transcription reactions were also performed in the absence of

reverse transcriptase (RT) to confirm complete DNase I digestion.

UM = Upper markers, LM = Lower markers. Expression for all

targets was confirmed in MCF10A, while transcription for peptide

5 was inconclusive in MCF7.

Found at: doi:10.1371/journal.pone.0008949.s003 (0.25 MB TIF)

Figure S4 3D structure of putative novel protein sequence.

Protein sequence of GENSCAN00000020420 superimposed to

crystal structure of UP1 complexed with D(TTAGGGT-

TAG(2PR)G) a human telemoeric repeat containing 2-AMINO-

PURINE (gold, PDB Accession 1u1r; X-RAY, Resolution: 1.80);

Modelled by Swiss model server (Automated mode) [57].

Structures were superimposed using PyMOL.

Found at: doi:10.1371/journal.pone.0008949.s004 (0.59 MB TIF)
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