4 research outputs found

    A novel galacturonide from Xanthomonas campestris

    No full text
    Enzyme preparations from Xanthomonas campestris incubated in the presence of UDP-[14C]GlcA and Mg2+ produced a lipophilic galacturonide with unusual properties. It was easily degraded by both mild acid treatment (0.01 M-HCl, 100°C, 10 min) and mild alkali treatment (0.06 M-NaOH, room temperature, 5 min) releasing free [14C]galacturonic acid. The galacturonide appeared to be a single compound with one negative charge, as judged by TLC, paper electrophoresis and chromotography, LH-20 gel filtration and DEAE-cellulose column chromatography. Competition experiments indicated that the true glycosyl donor was UDP-GalA, in agreement with the detection of UDP-GlcA-4-epimerase activity in the crude enzyme preparation. The transglycosidase activity was located mainly in the membrane fraction. UDP inhibited the reaction and even produced some loss of label, suggesting an easily reversible reaction. UMP had almost no effect.Fil:Baldessari, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ielpi, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dankert, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Splice-Site Mutations in the Axonemal Outer Dynein Arm Docking Complex Gene CCDC114 Cause Primary Ciliary Dyskinesia

    Get PDF
    Defects in motile cilia and sperm flagella cause primary ciliary dyskinesia (PCD), characterized by chronic airway disease, infertility, and left-right laterality disturbances, usually as a result of loss of the outer dynein arms (ODAs) that power cilia/flagella beating. Here, we identify loss-of-function mutations in CCDC114 causing PCD with laterality malformations involving complex heart defects. CCDC114 is homologous to DCC2, an ODA microtubule-docking complex component of the biflagellate alga Chlamydomonas. We show that CCDC114 localizes along the entire length of human cilia and that its deficiency causes a complete absence of ciliary ODAs, resulting in immotile cilia. Thus, CCDC114 is an essential ciliary protein required for microtubular attachment of ODAs in the axoneme. Fertility is apparently not greatly affected by CCDC114 deficiency, and qPCR shows that this may explained by low transcript expression in testis compared to ciliated respiratory epithelium. One CCDC114 mutation, c.742G>A, dating back to at least the 1400s, presents an important diagnostic and therapeutic target in the isolated Dutch Volendam population

    Bioactive Peptides used by Bacteria in the Concur-Rence for the Ecological Niche: General Classification and Mode of Action (Overview)

    No full text
    corecore