28 research outputs found

    Are CDI Systems Multicolored, Facultative, Helping Greenbeards?

    Get PDF
    Competitive and cooperative interactions between organisms, including bacteria, can significantly impact the composition of a community and the fitness of its members, as well as the fitness of their hosts when communities are living on or within other organisms. Understanding the underlying mechanisms is critical to the development of strategies to control microbiological communities that impact animal and plant health and also for understanding the evolution of social behaviors, which has been challenging for evolutionary biologists. Contact-dependent growth inhibition (CDI) is a phenomenon defined by the delivery of a protein toxin to the cytoplasm of neighboring bacteria upon cell–cell contact, resulting in growth inhibition or death unless a specific immunity protein is present. CDI was first described based on observations of interbacterial killing and has been assumed to function primarily as a means of eliminating competitor cells. However, recent molecular evidence indicates that multiple levels of specificity restrict CDI toxin delivery and activity to the same bacterial strain, and that CDI system proteins can mediate cooperative behaviors among ‘self’ cells, a phenomenon called contact-dependent signaling (CDS). Here we review these recent findings and discuss potential biological and evolutionary implications of CDI system-mediated interbacterial competition and cooperation

    Bacterial lysis liberates the neutrophil migration suppressor YbcL from the periplasm of uropathogenic Escherichia coli

    Get PDF
    Uropathogenic Escherichia coli (UPEC) modulates aspects of the innate immune response during urinary tract infection to facilitate bacterial invasion of the bladder epithelium, a requirement for the propagation of infection. For example, UPEC-encoded YbcL suppresses the traversal of bladder epithelia by neutrophils in both an in vitro model and an in vivo murine cystitis model. The suppressive activity of YbcL requires liberation from the bacterial periplasm, though the mechanism of release is undefined. Here we present findings on the site of action of YbcL and demonstrate a novel mode of secretion for a UPEC exoprotein. Suppression of neutrophil migration by purified YbcL(UTI), encoded by cystitis isolate UTI89, required the presence of a uroepithelial layer; YbcL(UTI) did not inhibit neutrophil chemotaxis directly. YbcL(UTI) was released to a greater extent during UPEC infection of uroepithelial cells than during that of neutrophils. Release of YbcL(UTI) was maximal when UPEC and bladder epithelial cells were in close proximity. Established modes of secretion, including outer membrane vesicles, the type II secretion system, and the type IV pilus, were dispensable for YbcL(UTI) release from UPEC. Instead, YbcL(UTI) was liberated during bacterial death, which was augmented upon exposure to bladder epithelial cells, as confirmed by detection of bacterial cytoplasmic proteins and DNA in the supernatant and enumeration of bacteria with compromised membranes. As YbcL(UTI) acts on the uroepithelium to attenuate neutrophil migration, this mode of release may represent a type of altruistic cooperation within a UPEC population during colonization of the urinary tract

    RNA interference in marine and freshwater sponges

    Get PDF
    Background: The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available. Results: We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from ‘knocking down’ expression of the actin gene. Conclusion: This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals

    RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria

    Get PDF
    Background: The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available. Results: We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from `knocking down' expression of the actin gene. Conclusion: This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals

    Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes

    Get PDF
    Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. Conclusions/Significance: These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div

    Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells

    No full text
    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1

    Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses

    No full text
    Adult human bone marrow-derived mesenchymal stem cells (hMSCs) are under study as therapeutic delivery agents that assist in the repair of damaged tissues. To achieve the desired clinical outcomes for this strategy requires a better understanding of the mechanisms that drive the recruitment, migration, and engraftment of hMSCs to the targeted tissues. It is known that hMSCs are recruited to sites of stress or inflammation to fulfill their repair function. It is recognized that toll-like receptors (TLRs) mediate stress responses of other bone marrow-derived cells. This study explored the role of TLRs in mediating stress responses of hMSCs. Accordingly, the presence of TLRs in hMSCs was initially established by reverse transcription-polymerase chain reaction assays. Flow cytometry and fluorescence immunocytochemical analyses confirmed these findings. The stimulation of hMSCs with TLR agonists led to the activation of downstream signaling pathways, including nuclear factor κB, AKT, and MAPK. Consequently, activation of these pathways triggered the induction and secretion of cytokines, chemokines, and related TLR gene products as established from cDNA array, immunoassay, and cytokine antibody array analyses. Interestingly, the unique patterns of affected genes, cytokines, and chemokines measured identify these receptors as critical players in the clinically established immunomodulation observed for hMSCs. Lastly, hMSC migration was promoted by TLR ligand exposure as demonstrated by transwell migration assays. Conversely, disruption of TLRs by neutralizing TLR antibodies compromised hMSC migration. This study defines a novel TLR-driven stress and immune modulating response for hMSCs that is critical to consider in the design of stem cell-based therapies
    corecore