View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Digital Commons@Becker

Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2014

Bacterial lysis liberates the neutrophil migration
suppressor YbcL from the periplasm of
uropathogenic Escherichia coli

Megan E. Lau
Washington University School of Medicine in St. Louis

Elizabeth S. Danka
Washington University School of Medicine in St. Louis

Kristin M. Tiemann
Washington University School of Medicine in St. Louis

David A. Hunstad
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access pubs

Recommended Citation

Lau, Megan E.; Danka, Elizabeth S.; Tiemann, Kristin M.; and Hunstad, David A., ,"Bacterial lysis liberates the neutrophil migration
suppressor YbcL from the periplasm of uropathogenic Escherichia coli.” Infection and Immunity.82,12. 4921-4930. (2014).
http://digitalcommons.wustl.edu/open_access_pubs/3585

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open

Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.


https://core.ac.uk/display/70383556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu

Al

Journals.ASM.org

Bacterial Lysis Liberates the Neutrophil Migration Suppressor YbcL
from the Periplasm of Uropathogenic Escherichia coli

Megan E. Lau,®* Elizabeth S. Danka,? Kristin M. Tiemann,? David A. Hunstad®P

Departments of Pediatrics® and Molecular Microbiology,” Washington University School of Medicine, St. Louis, Missouri, USA

Uropathogenic Escherichia coli (UPEC) modulates aspects of the innate immune response during urinary tract infection to facil-
itate bacterial invasion of the bladder epithelium, a requirement for the propagation of infection. For example, UPEC-encoded
YbcL suppresses the traversal of bladder epithelia by neutrophils in both an in vitro model and an in vivo murine cystitis model.
The suppressive activity of YbcL requires liberation from the bacterial periplasm, though the mechanism of release is undefined.
Here we present findings on the site of action of YbcL and demonstrate a novel mode of secretion for a UPEC exoprotein. Sup-
pression of neutrophil migration by purified YbcL, 1, encoded by cystitis isolate UTI89, required the presence of a uroepithelial
layer; YbcL1; did not inhibit neutrophil chemotaxis directly. YbcLy1; was released to a greater extent during UPEC infection of
uroepithelial cells than during that of neutrophils. Release of YbcL,1; was maximal when UPEC and bladder epithelial cells were
in close proximity. Established modes of secretion, including outer membrane vesicles, the type II secretion system, and the type
IV pilus, were dispensable for YbcLy; release from UPEC. Instead, YbcL 1, was liberated during bacterial death, which was aug-

mented upon exposure to bladder epithelial cells, as confirmed by detection of bacterial cytoplasmic proteins and DNA in the
supernatant and enumeration of bacteria with compromised membranes. As YbcL ;1 acts on the uroepithelium to attenuate
neutrophil migration, this mode of release may represent a type of altruistic cooperation within a UPEC population during colo-

nization of the urinary tract.

Urinary tract infections (UTIs), which are among the most
common bacterial infections in humans, are caused chiefly by
uropathogenic Escherichia coli (UPEC) (1). The economic and
societal burdens associated with UTIs are substantial; in the
United States alone, UTIs result in approximately $4 billion in
direct and indirect costs annually, including millions of physician
visits and antibiotic prescriptions (2, 3). While antibiotics typi-
cally help to resolve acute, uncomplicated UTIs, UPEC strains are
acquiring resistance to commonly used antibiotic classes at an
alarming rate (4). Additionally, complicated and recurrent UTIs
plague a notable subset of the population, despite antibiotic treat-
ment and apparent resolution of prior infections (5). To address
these ongoing challenges, it is imperative to understand the mech-
anisms by which UPEC causes disease in the urinary tract.

The establishment of a UTI represents a critical point in the
UPEC infectious cycle. To facilitate colonization of the bladder,
UPEC dampens the innate immune response (6), characterized by
the production of cytokines and chemokines and the recruitment
ofleukocytes, primarily polymorphonuclear leukocytes (PMN) or
neutrophils, from the periphery to the bladder lumen (7, 8). One
strategy for suppressing acute inflammation relies on the activity
of UPEC-encoded YbcL, a periplasmic protein that inhibits tran-
suroepithelial PMN migration in an in vitro model and during in
vivo murine cystitis (9). The delayed arrival of PMN to the bladder
provides an interval, free of phagocytic pressure, during which
UPEC can accomplish invasion of the uroepithelium, a step that is
essential for the propagation of infection. Conservation of YbcL
homologs among UPEC isolates associated with various disease
manifestations suggests that the suppressive activity of this pro-
tein is important for colonization of the urinary tract (9). Non-
pathogenic E. coli strain MG1655 also encodes a YbcL variant
(denoted YbcLy,;), though a single amino acid substitution
(T78V) in this variant abrogates its effect on PMN migration (9).
However, the suppressive activity of UPEC YbcL can be conferred
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on MG1655 through episomal expression of YbcLy,, the variant
encoded by cystitis isolate UTI89, or by exogenous addition of
purified YbcLy to the bacterial inoculum at concentrations as
low as 8 pM (9). Lastly, liberation of YbcLyq; from the periplasm
is required for suppression of transuroepithelial PMN migration
(9), though the mechanism by which YbcL; is released and the
site of action of YbcL,; are unclear.

Aside from the type V secretion systems (T5SS), few proteins
secreted from the periplasm and their corresponding modes of
secretion have been well characterized in UPEC. Outer membrane
vesicles (OMVs) have been shown to deliver cytotoxic necrotizing
factor 1 (Cnfl), a UPEC toxin, to the extracellular environment
and eukaryotic cells (10-12). However, OMVs have not been ex-
tensively investigated in the context of UPEC infection, and no
other UPEC effectors delivered by OMVs have been identified.
Additionally, the type II secretion system (T2SS) and type IV pilus
(T4P) encoded by UPEC appear to contribute to pathogenesis in
the urinary tract (13), though periplasmic substrates of these sys-
tems that are important for pathogenesis have yet to be identified.
Though far less common, bacterial death can also serve as a mech-
anism for release of intracellular proteins into the extracellular
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milieu. In other E. coli pathotypes, Shiga toxin is liberated from
the periplasm and colicin from the cytoplasm during bacterio-
phage-mediated lysis and quasilysis, respectively (14, 15). How-
ever, liberation of UPEC effectors solely through bacterial death
has not been demonstrated. As the mode of release has bearing on
protein stability, delivery, and targeting, elucidating the route by
which YbcLy, 1 leaves the periplasm may provide insight into its
activity.

In this study, we investigated the site of action and the mode of
release of YbcLyp; during UPEC infection. Suppression of PMN
migration by YbcLy,r; required the presence of bladder epithelial
cells. Release of YbcLy from the periplasm was augmented when
UPEC was exposed to cultured uroepithelial cells, compared with
exposure to PMN or medium alone; this increase depended on
proximity of UPEC to bladder epithelial cells. Additionally,
YbcLyp; was released from UPEC in soluble form, though the
T2SS and T4P encoded by UTI89 were dispensable for YbcLy
release. However, a significant increase in bacterial death, liberat-
ing YbcLr, was demonstrated upon UPEC exposure to bladder
epithelial cells. Taken together, these results contribute to our
understanding of the site of action of YbcL,1; and describe a novel
mode of delivery for a UPEC exoprotein.

MATERIALS AND METHODS

Bacterial strains and culture. E. coli was grown statically in Luria-Bertani
(LB) broth for 18 h at 37°C. Ampicillin, chloramphenicol, or isopropyl
B-p-1-thiogalactopyranoside (IPTG) was added at 100 pg/ml, 20 pg/ml,
or 100 M, respectively, unless otherwise indicated. MG1655 is a K-12
laboratory strain of E. coli (16), and UTI89 is a UPEC isolate from a patient
with cystitis (17). UTI89 fimH::kan was a kind gift from S. Hultgren.
UTI89/pcomGFP contains the GFPmut3 gene in pcom100, where green
fluorescent protein (GFP) is constitutively expressed (18). UTI89 AybcL
was generated by excision of the chloramphenicol resistance cassette from
UTI89 ybcL::cat (9) through introduction of the Flp recombinase-express-
ing vector pCP20 (19). pYbcLpy, containing the UTI89 ybcL allele in
PTRCY9A (Amp"), was created as previously described (9). UTI89 yheF::
cat was created by linear transformation of UTI89/pKM208 (20) with a
fragment amplified from template plasmid pKD3 (19) using the primers
MEL296 and MEL297 (primer sequences are given in Table S1 in the
supplemental material). UTI89 hofQ::cat was created similarly using
primers MEL300 and MEL301. The deletions were verified by direct se-
quencing.

To replace the ampicillin resistance cassette in pTRC99A with a chlor-
amphenicol resistance cassette, pTRC99A was amplified using primers
MEL245 and MEL246, and the chloramphenicol resistance cassette was
amplified from template plasmid pKD3 (19) using primers MEL247 and
MEL248. The resulting PCR products were digested with Pacl and Spel
and then ligated. Transformed clones of E. coli Top10 (Invitrogen) were
selected on chloramphenicol plates, and the accuracy of the resulting plas-
mid, pMEL25, was tested by PCR and restriction enzyme digestion. To
generate a translational fusion between YbcL and the B-lactamase variant
TEM-1, the ybcL open reading frame (ORF) was amplified from UTI89
genomic DNA using primers MEL253 and MEL275 and digested with
Sacl and Notl. The DNA sequence encoding the mature form of TEM-1
(excluding the signal sequence) was amplified from plasmid pBR322 us-
ing primers MEL278 and MEL284, with the reverse primer containing the
FLAG epitope sequence, and digested with NotI and BamHI. The digested
PCR products were ligated into pMEL25 (Chl") that had been digested
with Sacl and BamHI. Transformed clones of E. coli Top10 were selected
on chloramphenicol plates, and the accuracy of the resulting construct
pYbcL:TEM-1 was confirmed by direct sequencing. Expression of the
fusion protein upon IPTG induction was confirmed by Western blotting
of bacterial lysates.
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UTI89 surA::kan was generated as described previously (21). To con-
trol expression and monitor localization, a plasmid (denoted pSurA) en-
coding SurA with a C-terminal hemagglutinin (HA) tag under the control
of an IPTG-inducible promoter was constructed. The surA ORF was am-
plified from UTI89 genomic DNA using primers JLP253 and JLP254, with
the reverse primer containing the HA epitope sequence, and digested with
Xbal and HindIII. The digested PCR product was ligated into pTRC99A
(Amp") that had been similarly digested. Transformed clones of Top10
were selected on ampicillin plates, and the accuracy of the resulting con-
struct was confirmed by direct sequencing. The tetracycline resistance
cassette from CLC328 skp::tet (a kind gift of T. Silhavy) was transferred by
P1 phage transduction to UTI89, generating UTI89 skp::tet. As with
pSurA, the skp ORF was amplified from UTI89 genomic DNA using prim-
ers MEL243 and MEL244, with the reverse primer containing the FLAG
epitope sequence, and digested with BamHI and Xbal. The digested PCR
product was ligated into pTRC99A (Amp*) that had been similarly di-
gested. Transformed clones of Top10 were selected on ampicillin plates,
and the accuracy of the resulting construct, pSkp, was confirmed by direct
sequencing.

Human PMN isolation and migration. In accordance with a protocol
approved by the Washington University Human Research Protection Of-
fice, PMN were isolated from venous blood of healthy adult volunteers
according to previously established protocols (9, 22). Briefly, dextran sed-
imentation was used to reduce erythrocytes, leukocytes were separated
using a Ficoll density gradient (Ficoll-Paque Plus; GE Healthcare), and
remaining erythrocytes were lysed hypotonically. Purified PMN were re-
suspended in serum-free RPMI 1640 medium (Gibco) to a concentration
of 107 PMN/ml and used immediately. PMN viability was >99% as as-
sessed by trypan blue exclusion, and purity was >99% as determined by
visualization of nuclear morphology after staining (Hema3; Fisher Scien-
tific).

To evaluate PMN migration, 100 nM N-formyl-Met-Leu-Phe (fMLF)
(Sigma) was added to 0.6 ml RPMI in a 24-well low attachment plate
(Corning). YbcL variants, YbcL;py and YbcL, g, expressed by UTI89 and
MG1655, respectively, were purified as previously described (9) and
added to the 24-well plate at a final concentration of 225 ng/ml, where
indicated. Transwell inserts (0.33-cm?® polyester membranes with a 3-um
pore size; Corning), either empty and uncoated or bearing confluent 5637
epithelial layers prepared as described previously (9, 22), were added to
each well, and 10° freshly isolated human PMN, prepared as described
above, were applied to the upper reservoir. PMN migration across the
Transwell insert into the lower reservoir was enumerated after 1 h usinga
hemacytometer and is shown normalized to 10° input PMN. The mean
and standard error of the mean (SEM) from at least 3 experiments is
shown.

Tissue culture and in vitro infection. Human bladder epithelial cell
lines 5637 (ATCC HTB-9) and T24 (ATCC HTB-4) were cultured in
RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS)
(Sigma). UROtsa cells, derived from the uroepithelium of human ureter
(23), were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
(Sigma) containing 10% FBS. Human lung epithelial cell lines A549 (ob-
tained from A. Hamvas) and HCC827 (ATCC CLR-2868) were grown in
RPMI with 10% FBS. All cell lines were grown and infected at 37°C in a
humidified atmosphere with 5% CO, and then washed three times with
Dulbecco’s phosphate-buffered saline (DPBS) (Gibco) before use in ex-
periments. All infections were performed in serum-free RPMI or DPBS as
noted below.

To assess localization by Western blotting, 5637 cells or freshly isolated
PMN were infected in RPMI with the indicated strains of E. coli at a
multiplicity of infection (MOI) of 40 bacteria/cell for 1 h unless otherwise
noted. The supernatant was collected, and the epithelial cells were washed
with PBS. Lysis was achieved by addition of 0.1% Triton X-100. The su-
pernatant and cell lysate samples were sterilized using syringe-driven fil-
ters (0.22-pwm pore size; Millipore), and protein was precipitated using
15% trichloroacetic acid (TCA) (Sigma) and then probed by Western
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blotting. D-Mannose (2%, wt/vol; Sigma) was added in selected experi-
ments, as noted in Results.

To spatially separate the bacterial inoculum from 5637 cells grown to
confluence in the bottom of a 6-well plate, UTI89/pYbcL ;1 ybcL::cat was
applied to 1 ml DPBS in the upper reservoir of a Transwell insert (4.67-
cm? polyester membranes with a 0.4-pm pore size; Corning), while 2 ml
DPBS was applied to the lower reservoir. After 1 h of incubation, the
supernatants from the upper and lower reservoirs and the cell lysate were
sterilized, TCA precipitated, and probed by Western blotting as described
above.

Protease protection and ultracentrifugation assays. The protease
protection assay is based on previously published protocols (11, 24). To
generate sterile supernatant containing YbcL;1;, 5637 cells in RPMI in
15-cm dishes were infected with UTI89/pYbcLy,; ybcL::cat at an MOI of
40. After 1 h of incubation, the supernatant was filter sterilized and sepa-
rated into four aliquots. Where indicated, proteinase K (Sigma), Triton
X-100, or phenylmethylsulfonyl fluoride (PMSF) (Sigma), a protease in-
hibitor, was added to the aliquots at 200 pg/ml, 0.1%, or 5 mM, respec-
tively. After incubation at 37°C for 45 min, protein was precipitated from
the reaction mixtures using 15% TCA and then probed by Western blot-
ting. In parallel experiments, sterile supernatant, generated as described
above, was ultracentrifuged at 245,000 X g for 1 h at 4°C. Protein was
precipitated from the supernatant using 15% TCA, while the ultracentri-
fuged pellet was resuspended using Laemmli sample buffer. The samples
were probed by Western blotting.

Western blotting. Proteins were separated by SDS-PAGE using 12%
polyacrylamide gels and transferred to a polyvinylidene difluoride
(PVDF) membrane (Millipore). After blocking with 2% nonfat milk plus
2% BSA, blots were probed with mouse anti-FLAG (1:1,000; Sigma), rab-
bit anti-HA (1:4,000; Invitrogen), rabbit anti-GroEL (1:105% Sigma), or
rabbit anti-GFP (1:4,000; Clontech) antibodies followed by goat anti-
mouse or goat anti-rabbit IgG antibodies (1:2,000; Sigma) and were de-
veloped using Tropix CDP-Star (Applied Biosystems). Densitometry
analysis was performed with Image]J.

B-Lactamase reporter assays. Cultured epithelial cells in 6-well plates
were infected with UTI89/pYbcL::TEM-1 AybcL at an MOIT of 40 for 1 h
unless otherwise indicated. The supernatant was cleared by centrifugation
at 16,000 X g for 5 min, and then aliquots were pipetted into a 96-well
plate. CCF2-FA (Invitrogen), a B-lactamase substrate consisting of a
cephalosporin core linking a 7-hydroxycoumarin to a fluorescein, was
added at a final concentration of 500 nM. In the presence of B-lactamase
activity, the cephalosporin core is cleaved, disrupting fluorescence reso-
nance energy transfer (FRET) between the coumarin and fluorescein mol-
ecules and changing the emitted fluorescence from green (520 nm) to blue
(447 nm). The reaction mixtures were incubated in the dark for 1 h at
37°C with shaking before fluorescence (excitation at 409 nm and emission
at 447 nm and 520 nm) was measured using a microtiter plate reader
(Synergy 2; BioTek). Fluorescence is represented as a ratio of 447 nm to
520 nm, and the mean and SEM from at least 3 experiments are shown.

To assess how PMN exposure affects release of YbcL::TEM-1 from the
periplasm, 5637 cells or PMN (isolated as described above) in 15-cm
dishes were infected with UTI89/pYbcL::TEM-1 AybcL at an MOI of 40.
After 1 hinfection, the supernatants were filter sterilized and concentrated
10-fold using centrifugal filter devices (10-kDa cutoff; Millipore). 3-Lac-
tamase activity in the concentrated supernatants was measured as de-
scribed above. In selected experiments, a protease inhibitor (Complete
Ultra Mini tablets; Roche) was added to supernatants following collec-
tion.

Experiments employing Transwell inserts (0.4-pwm pore size; Corn-
ing) to spatially separate the bacterial inoculum (in this case UTI89/
pYbcL:TEM-1 AybcL) from 5637 cells were conducted as described
above. After 1 h of incubation, the supernatants in the upper and lower
reservoirs were combined and cleared by centrifugation, and 3-lactamase
activity was measured. To generate conditioned medium, 5637 cells were
incubated in 1 ml RPMI for 1 h, and then the supernatant, or conditioned
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medium, was cleared by centrifugation at 16,000 X g for 5 min. UTI89/
pYbcL::TEM-1 AybcL was incubated in the conditioned medium for 1 h
before B-lactamase activity in the supernatant was measured as described
above.

Statistical analysis. Statistically significant differences were evaluated
using an unpaired Student ¢ test unless otherwise indicated.

DNA precipitation and PCR. To probe the supernatant for bacterial
DNA, 5637 cells in 15-cm dishes were mock infected or infected with
wild-type UTI89 at an MOI of 40 for 1 h unless otherwise noted. The
supernatant was filter sterilized, sodium acetate and isopropanol were
added to final concentrations of 300 mM and 50%, respectively, and the
supernatant was incubated at 4°C overnight. DNA was pelleted by centrif-
ugation at 11,000 X g for 30 min, washed with 70% ethanol, air dried, and
then resuspended in 10 mM Tris—1 mM EDTA, pH 8.0. PCR was con-
ducted using equivalent volumes of the precipitated DNA samples as tem-
plates, 30 rounds of amplification, and primers MEL173 and MEL174,
complementary to the chromosomal UTI89 ybcL allele. Amplicons were
resolved using 1% agarose gels and visualized after ethidium bromide
staining.

Bacterial viability. To assess bacterial viability, wild-type UTI89 was
incubated in RPMI in the presence or absence of 5637 cells for 1 h. Bac-
teria in the supernatant were applied to poly-L-lysine-coated coverslips
(BD Biosciences) by centrifugation at 400 X g for 5 min, fixed with 3%
paraformaldehyde for 30 min, and then stained using the Live/Dead
BacLight bacterial viability kit (Invitrogen) according to the manufac-
turer’s instructions. Coverslips were mounted onto slides using ProLong
Gold antifade reagent (Invitrogen) and imaged using an epifluorescence
microscope (Zeiss Axioskop 2 MOT Plus). Green (live) and red (dead)
bacteria were enumerated using Volocity 3D image analysis software (Per-
kin-Elmer). Data are represented as a percentage of total bacteria enumer-
ated, and the mean of 4 replicates is shown. Statistically significant differ-
ences in viability were determined using Fisher’s exact test. In additional
experiments to detect bacterial fragments not identified by BacLight stain-
ing, bacteria were also incubated with rabbit anti-E. coli (E3500-06; US
Biologicals) or anti-OmpA antiserum, followed by detection with Alexa
Fluor 350-conjugated anti-rabbit IgG secondary antibody (A11046; Life
Technologies).

RESULTS

Suppression of PMN migration by YbcLy; requires a bladder
epithelial barrier. Given the localization of YbcL; 1 to cell lysates
of both bladder epithelial cells and PMN during UPEC infection
(9), we sought to further characterize the site of action of YbcLy
by investigating the requirement for bladder epithelial cells during
suppression of PMN migration. We employed an in vitro assay,
analogous to the transuroepithelial PMN migration assay (9, 22),
to quantify PMN migration across empty Transwell inserts with
pores sufficiently small to prevent passive movement of PMN. The
chemoattractant peptide fMLF was placed in the lower reservoir of
a Transwell insert, freshly isolated PMN were applied to the upper
reservoir, and the level of PMN migration across the Transwell
insert into the lower reservoir was quantified after 1 h using a
hemacytometer. In the presence or absence of 5637 bladder epi-
thelial cells on the Transwell inserts, fMLF elicited significantly
more PMN migration than mock treatment (Fig. 1A and 1B, re-
spectively) (P < 0.005). The addition of purified YbcL to the
lower reservoir significantly reduced the level of PMN elicited by
fMLF when 5637 cells were present on the Transwell insert (Fig.
1A) (P < 0.05). In agreement with previous findings (9), suppres-
sion of transuroepithelial PMN migration was not observed upon
addition of the MG1655 YbcL variant (YbcLy,) (Fig. 1A). In con-
trast, purified YbcLy had no effect on PMN migration when
empty Transwell inserts were used (Fig. 1B), even at a concentra-
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FIG 1 Bladder epithelial cells are required for suppression of PMN migration
by YbcLyp. (A and B) PMN were applied to the upper reservoir of either
Transwell inserts bearing confluent 5637 bladder epithelial cell layers (A) or
empty Transwell inserts (B), and migration into the lower reservoir was enu-
merated after 1 h and is shown normalized to 10° input PMN. fMLF and
purified YbcL variants were included in the lower reservoir, where indicated.
In the presence of 5637 cells on the Transwell inserts, YbcLyp, but not
YbcLyg, significantly reduced the level of PMN migration elicited by fMLF (A)
(¥, P < 0.05). In contrast, YbcLy,; had no effect on PMN migration in the
absence of 5637 cells (B). (C) 5637 cells were incubated with UTI89/pYbcLy;
ybcL::cat (bacteria) or 100 ng purified YbcLy,qy (protein) for 1 h, and then the
supernatant and 5637 cell lysate were filter sterilized, TCA precipitated, and
probed by Western blotting. YbcLy;; was detected in the supernatant and cell
lysate during UPEC infection but was detected solely in the supernatant when
the inoculum consisted of purified protein.

tion 1,500-fold above the lowest effective dose (9). These observa-
tions demonstrate that suppression of PMN migration by YbcL ;1
in this model requires the presence of a bladder epithelial barrier.

To further investigate the site of action of YbcLy, we com-
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FIG 2 YbcLy,y is released from the bacterial periplasm in soluble form. 5637
cells were infected with UTI89/pYbcLy 1y ybcL::cat for 1 h before the superna-
tant was filter sterilized. (A) Proteinase K, Triton X-100, or PMSF was added to
the sterile supernatant, where indicated, and the reaction mixtures were
incubated at 37°C for 45 min. (B) Alternatively, sterile supernatant (S) was
ultracentrifuged at 245,000 X g for 1 h at 4°C. Protein was TCA precipi-
tated, when necessary, and probed by Western blotting. YbcL,; was de-
graded by proteinase K in the absence of Triton X-100 (A) and was detected
exclusively in the supernatant (UC-S), and not in the pellet (UC-P), after
ultracentrifugation (B).

pared the localization of exogenous purified YbcL,; with that of
YbcLyq; episomally expressed by UPEC. Cultured 5637 cells in
6-well plates were either infected with UTI89/pYbcLy,y ybcL::cat
or incubated with 100 ng purified YbcLy for 1 h. The superna-
tant and 5637 cell lysate were filter sterilized to remove intact
bacteria, protein was precipitated using 15% TCA, and the sam-
ples were probed by Western blotting. Consistent with prior re-
sults (9), YbcLy; was detected in both the supernatant and 5637
cell lysate during UPEC infection (Fig. 1C, bacteria). However,
YbcLy,r; was detected only in the supernatant when purified pro-
tein was substituted for a live bacterial inoculum (Fig. 1C, pro-
tein). Similar results were observed when the experiment was
scaled up to 15-cm dishes, suggesting that the absence of purified
YbcLyq; from the 5637 cell lysate did not reflect insensitivity of the
Western blotting reagents. As purified YbcL,; suppressed PMN
migration in the transuroepithelial PMN migration assay (9) (Fig.
1A), these data suggest that YbcLy,; functions primarily from an
extracellular location.

YbcLyq is released into the supernatant in soluble form.
While purified YbcL1; suppressed transuroepithelial PMN mi-
gration in vitro, it was unclear whether YbcL;; was released from
the periplasm in soluble form during UPEC infection. In addition
to canonical secretion systems such as the T2SS, OMVs have been
implicated in secretion of bacterial effectors (25). To explore the
mode of delivery from the periplasm, we examined the character-
istics of extracellular YbcL, ;. Cultured 5637 cells were infected
with UTI89/pYbcLypy ybcL::cat for 1 h, and the supernatant was
filter sterilized and subjected to protease (proteinase K) treatment
in the presence and absence of detergent (Triton X-100) or pro-
tease inhibitor (PMSF). By Western blotting, YbcL, 1 was entirely
susceptible to digestion by protease in the absence of detergent,
indicating that YbcL ;1 in the supernatant is not contained within
OMVs (Fig. 2A). Similar trends in protease susceptibility were
observed when purified YbcL;1; in RPMI was used in place of the
supernatant from 5637 cell infection (data not shown). Addition-
ally, the concentration of protease used in these experiments did
not compromise OMV integrity in the absence of detergent, as
assessed using purified OMVs (data not shown). To confirm these
observations using an alternative approach, we ultracentrifuged
sterile supernatant, generated by infection of 5637 cells with
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FIG 3 T2SS and T4P are dispensable for YbcL; release from UPEC and E.
coli K-12. 5637 cells were infected with the indicated strains of E. coli for 1 h.
The supernatant and 5637 cell lysate were filter sterilized, TCA precipitated,
and probed by Western blotting. An equivalent volume of each bacterial inoc-
ulum (input) was included to demonstrate similar YbcLy,; expression across
bacterial strains. (A) As seen during infection with UTI89/pYbcLy, 1, YbcLypy
was detected in the supernatant and cell lysate during infection with non-
pathogenic E. coli strain MG1655/pYbcLy . (B) The levels of YbcLyqy in the
supernatant and cell lysate were unaffected by lack of YheF or HofQ, secretins
of the T2SS and T4P, respectively, in UTI89.

UTI89/pYbcLy; ybcL::cat as described above, at a speed previ-
ously determined to pellet OMVs, separating them from the sol-
uble fraction. By Western blotting, YbcLy; was detected exclu-
sively in the supernatant fraction after ultracentrifugation (Fig.
2B). Taken together, these data indicate that YbcLyy is released
from the periplasm in soluble form and is not packaged within
OMVs.

Release of YbcL1; from UPEC and K-12 E. coli is T2SS and
T4P independent. We previously observed that YbcLyp, sup-
pressed transuroepithelial PMN migration when episomally ex-
pressed in nonpathogenic E. coli strain MG1655 (9). As YbcLyp
was unable to influence PMN migration from within the bacterial
periplasm (9), we hypothesized that the mode of release was con-
served between uropathogenic and nonpathogenic E. coli strains.
To test this hypothesis, 5637 cells were infected with either UTI89
or MG1655 episomally expressing YbcLy; for 1 h, and the super-
natant and 5637 cell lysate were filter sterilized, TCA precipitated,
and probed by Western blotting. As with UTI89/pYbcLyy,
YbcLyp; was detected in both the supernatant and 5637 cell lysate
during infection with MG1655/pYbcLy; (Fig. 3A). These data
suggest that YbcLy release from the periplasm is mechanistically
conserved between these strains and does not require additional
UPEC-specific factors.

We next focused on canonical secretion systems encoded by
both UTI89 and MG1655 that would be capable of translocating
periplasmic substrates. To investigate a role for the T2SS in release
of YbcLyp from the periplasm, we deleted yheF, which encodes

December 2014 Volume 82 Number 12

UPEC Lysis Liberates Periplasmic YbcL

the outer membrane-localized secretin essential for T2SS func-
tion. As the T4P is evolutionarily related to the T2SS, we generated
aseparate deletion of hofQ, the gene that encodes the T4P secretin.
The localization pattern of YbcLy, 1, when episomally expressed in
wild-type UTI89, UTI89 yheF:cat, or UTI89 hofQ:cat, was as-
sessed upon infection of 5637 cells as described above. Similar
levels of YbcL, 1, were detected in the supernatant and 5637 cell
lysate irrespective of these mutations (Fig. 3B). These data indicate
that neither the T2SS nor the T4P encoded by UTI89 is responsible
for delivering YbcLy, to the extracellular milieu. Furthermore, an
isogenic strain lacking expression of flgH, which encodes the se-
cretin of the flagellar biosynthesis machinery, exhibited similar
YbcLy localization (data not shown).

YbcL is released into the supernatant in a dose-, time-, and
epithelial cell-dependent manner. As the canonical secretion sys-
tems encoded by UPEC appeared to be dispensable for delivering
periplasmic YbcLy,y to the extracellular space, we further charac-
terized the parameters of YbcLy; release using a quantitative in
vitro assay based on the enzyme activity of B-lactamase (TEM-1).
With E. coli expressing a translational fusion between full-length
YbcLyq; and the mature form of TEM-1 (denoted YbcL:: TEM-1),
the level of B-lactamase activity in the supernatant reflects the
amount of YbcL::TEM-1 liberated. Of note, episomal expression
of YbcL:TEM-1 complemented the phenotype of UTI89 AybcL in
the transuroepithelial PMN migration assay (data not shown).
Cultured 5637 cells in 6-well plates were infected with UTI89/
pYbcL:TEM-1 AybcL, and cleared supernatants were assayed in a
96-well plate after addition of the B-lactamase substrate CCF2.
When 5637 cells were infected with UTI89/pYbcL::TEM-1 AybcL
after overnight induction with various concentrations of IPTG,
the level of B-lactamase activity in the supernatant correlated with
the level of IPTG induction (see Fig. SIA in the supplemental
material), demonstrating a relationship between the amount of
YbcL::TEM-1 in the periplasm and the amount released into the
supernatant. When 5637 cells were infected with UTI89/pYbcL::
TEM-1 AybcL for increasing durations before B-lactamase activity
was measured, the level of fluorescence in the supernatant in-
creased with longer incubation (see Fig. S1B in the supplemental
material), suggesting that release of YbcL:TEM-1 from the
periplasm occurs over time.

To investigate release of YbcL::TEM-1 in the presence of alter-
native eukaryotic cell types, UTI89/pYbcL::TEM-1 AybcL was in-
cubated in RPMI alone or in the presence of cultured uroepithelial
cells (5637, T24, or UROtsa) for 1 h before the level of YbcL::
TEM-1 in the supernatant was measured as described above. Sig-
nificantly (3- to 4-fold) higher levels of fluorescence were detected
in supernatant generated in the presence of uroepithelial cells than
in supernatant generated in RPMI alone (Fig. 4A) (P < 0.05). Of
note, release in response to A549 or HCC827 human lung epithe-
lial lines was similar to that with uroepithelial cells (data not
shown). These results indicate that release of YbcL::TEM-1 from
UTIBY is not constitutive but rather is dependent upon specific
conditions.

To investigate extracellular release of YbcL::TEM-1 in the pres-
ence of professional phagocytes, 10° PMN were infected with
UTI89/pYbcL::TEM-1 AybcL for 1 h before B-lactamase activity in
the cleared supernatant was quantified. With these experimental
parameters, no 3-lactamase activity was detected in the superna-
tant (data not shown). However, previous results had suggested
that the level of YbcLy in the supernatant during infection of
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FIG 4 Release of YbcL,q is uroepithelial cell dependent. Cultured epithelial
cells in 6-well plates were infected with UTI89/pYbcL::TEM-1 AybcL for 1 h
unless otherwise indicated. The supernatant was cleared, aliquots were loaded
into a 96-well plate, and the fluorescent B-lactamase substrate CCF2 was added
to each well. After 1 h of incubation, fluorescence was measured and is repre-
sented as a ratio of 447 to 520 nm. Background fluorescence from medium is
indicated by the dashed line. (A) Significantly more B-lactamase activity was
detected in the supernatant after infection of 5637, T24, or UROtsa cells than
after incubation in RPMI (*, P < 0.05). (B) Supernatant generated from in-
fection of 5637 cells or PMN in 15-cm dishes with UTI89/pYbcL:TEM-1
AybcL was sterilized and concentrated 10-fold, and B-lactamase activity was
determined as described above. Significantly more 3-lactamase activity was
detected in the supernatant after infection of 5637 cells than after infection of
PMN (*, P < 0.0001).

PMN was low (9). In a further attempt to detect YbcL::TEM-1 in
the supernatant, 10" 5637 cells or PMN were infected with UTI89/
pYbcL::TEM-1 AybcL for 1 h. The supernatants were filter steril-
ized and concentrated 10-fold using centrifugal filtration, and
B-lactamase activity was measured. Under this modified protocol,
YbcL::TEM-1 was detectable in the supernatant during infection
of PMN, though the level was markedly lower than that observed
during infection of 107 5637 cells (Fig. 4B) (P < 0.0001). In agree-
ment with these findings, about 7-fold less YbcL was detected in
the supernatant during infection of PMN than during infection of
5637 cells by Western blotting (data not shown). Of note, addition
of protease inhibitors did not alter detection of YbcL (data not
shown), indicating that measured extracellular levels of the target
protein were not lowered by PMN-derived protease digestion.
Taken together, these data demonstrate that extracellular release
of YbcL from the periplasm occurs in a dose-, time-, and epithelial
cell-dependent manner.

UPEC proximity to bladder epithelial cells augments YbcLy
release. We next explored the uroepithelial cell-dependent in-
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crease in YbcL:TEM-1 release during UPEC infection. We
employed a UPEC mutant (UTI89 fimH::kan) defective in the
production of type 1 pili, surface appendages that mediate man-
nose-dependent binding and invasion of bladder epithelial cells
(26-28). Cultured 5637 cells in 6-well plates were infected with
UTI89/pYbcL; or UTI89/pYbcLyyy fimH::kan for 1 h before the
supernatant and 5637 cell lysate were sterilized, TCA precipitated,
and probed by Western blotting. Infection with the AfimH strain
resulted in substantially less YbcLyp; detected in the cell lysate
(~10% of the wild-type level) (see Fig. S2 in the supplemental
material), confirming that type 1 pili are a major determinant of
UPEC internalization into these cells. Of more interest, lower lev-
els of YbcLy; were also observed in the AfimH supernatants
(~70% of the wild-type level) (see Fig. S2 in the supplemental
material). Further, supernatant fluorescence after infection of
5637 cells with UTI89/pYbcL::TEM-1 AybcL was diminished by
27% upon addition of mannose (data not shown). These data
support the hypothesis that though contact is not strictly required,
proximity of UPEC to bladder epithelial cells augments extracel-
lular YbcLyq; release.

To further test this hypothesis, Transwell inserts with 0.4-pm
pores were employed to spatially separate the bacterial inoculum
from the 5637 cells, while allowing passive diffusion of small mol-
ecules. UTI89/pYbcLy,ry ybcL::cat was applied directly to the 5637
cells or to the upper reservoir of Transwell inserts. After 1 h of
incubation, the supernatants from both the upper and lower res-
ervoirs and the 5637 cell lysate were processed for Western blot-
ting as described above. In the presence of a physical barrier sep-
arating the bacterial inoculum from the 5637 cells, very little
YbcLy; was detected in the supernatant, and YbcL, 1, was absent
from the cell lysate (Fig. 5A).

To confirm these observations, we employed the 3-lactamase
reporter, using UTI89/pYbcL:TEM-1 AybcL as the bacterial inoc-
ulum, in conjunction with the 0.4-pm Transwell inserts. After 1 h
of incubation, the supernatants in the upper and lower reservoirs
were pooled and cleared, and B-lactamase activity was measured
as described above. In the absence of Transwell inserts, signifi-
cantly more fluorescence was detected in the supernatant after
infection of 5637 cells than after incubation in DPBS (Fig. 5B)
(P < 0.0005), consistent with previous observations. Interposi-
tion of the Transwell insert between the bacterial inoculum and
the 5637 cells significantly decreased the fluorescence detected in
the supernatant (Fig. 5B) (P < 0.005). Taken together, these data
demonstrate that proximity between UPEC and bladder epithelial
cells, augmented by type 1 pili, favors YbcLp; release from the
periplasm.

Despite the presence of Transwell inserts, significantly more
fluorescence was detected in the supernatant after infection of
5637 cells than after incubation in DPBS alone (Fig. 5B) (P <
0.05), suggesting that soluble factors produced by 5637 cells stim-
ulate some YbcL:TEM-1 release. To address this hypothesis,
UTI89/pYbcL::TEM-1 AybcL was incubated in RPMI in the pres-
ence or absence of 5637 cells for 1 h or in conditioned medium
that had been generated by incubating 5637 cells in RPMI for 1 h.
The level of supernatant -lactamase activity observed upon in-
cubation in conditioned medium was significantly greater than
that observed in RPMI (P < 0.0001), though significantly less than
that observed in the presence of 5637 cells (Fig. 5C) (P < 0.05). Of
note, inclusion of E. coli (uropathogenic or nonpathogenic) dur-
ing generation of the conditioned medium did not alter its effect
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FIG 5 Release of YbcLy,; is augmented by proximity to bladder epithelial
cells. 5637 cells were infected with UTI89/pYbcLy,; ybcL::cat (A) or UTI8Y/
pYbcL:TEM-1 AybcL (B and C) for 1 h. (A) The supernatant and 5637 cell
lysate were filter sterilized, TCA precipitated, and probed by Western blotting.
(B and C) B-Lactamase activity in cleared supernatant was measured using
CCEF2 as described for Fig. 4. Less YbcL,; was detected in the supernatant
when a Transwell insert (TW) physically separated the bacterial inoculum
from the 5637 cells (A and B) or when conditioned medium (CM) was used
(C) (*, P < 0.05). Boiling of the conditioned medium (CM-B) did not signif-
icantly alter YbcL, release (C).

on YbcL::TEM-1 release (data not shown). Finally, similar levels
of fluorescence were detected when the conditioned medium was
boiled before addition of the bacterial inoculum (Fig. 5C). These
data suggest that the soluble factors associated with YbcL::TEM-1
release are host cell derived and largely heat stable.

Bacterial death occurs during infection of bladder epithelial
cells. The canonical secretion systems appeared to be dispensable
for YbcLy release from the periplasm during UPEC infection of
bladder epithelial cells. Given that a few E. coli-encoded proteins
(e.g., Shiga toxin and colicin) reach the extracellular milieu exclu-
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FIG 6 UPEC viability decreases in the presence of bladder epithelial cells. (A)
5637 cells were infected with UPEC strains expressing the indicated proteins.
After 0 or 60 min, the supernatant was sterilized, TCA precipitated, and probed
by Western blotting. A portion of the bacterial inoculum (input) is also shown.
(B) 5637 cells were mock infected or infected with UTI89 for 0 or 60 min before
the supernatant was sterilized, DNA was precipitated with isopropanol, and
PCR was conducted using UTI89-specific primers. PCRs serving as negative
(—) and positive (+) controls contained water and UTI89 genomic DNA,
respectively, as the template. Bacterial periplasmic (YbcL, SurA, and Skp) and
cytoplasmic (GroEL and GFP) proteins (A) and bacterial DNA (B) were de-
tected in the supernatant after infection of 5637 cells. (C) UTI89 was incubated
in the presence or absence of 5637 cells for 1 h. Bacteria were fixed to coverslips,
stained for membrane integrity, and imaged and enumerated by fluorescence
microscopy. Significantly more dead bacteria exhibiting severely compro-
mised membranes were observed after infection of 5637 cells than after incu-
bation in RPMI (P < 0.05).

sively via bacterial death (14, 15), we tested the hypothesis that
YbcLyqy is liberated from the UPEC periplasm in an analogous
manner. First, 5637 cells were infected with UTI89/pYbcLp;
ybcL::cat, UTI89/pSurA surA::kan, UTI89/pSkp skp::tet, UTI89, or
UTI89 pcomGFP. At 0 and 60 min, supernatants were filter ster-
ilized, TCA precipitated, and probed by Western blotting. To en-
sure that intracellular proteins detected in the supernatant would
not represent contamination from the overnight bacterial culture,
each bacterial inoculum was washed repeatedly in PBS before in-
fection of the 5637 cells. Accordingly, very little of the periplasmic
proteins YbcL, SurA, and Skp and the cytoplasmic proteins GroEL
and GFP were detected in the supernatant at time zero (Fig. 6A).
In contrast, these intracellular proteins were readily detected in
the supernatant after 60 min (Fig. 6A).
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In addition to intracellular proteins, we also probed the super-
natant for bacterial DNA after infection of 5637 cells with wild-
type UTIB9. At selected time points, the supernatant was filter
sterilized, DNA was precipitated using isopropanol, and PCR (us-
ing primers complementary to the UTI89 chromosomal ybcL al-
lele) was conducted using an equivalent volume of each sample as
the template. The rounds of amplification were minimized so that
the intensity of the resulting amplicon would be proportional
to the amount of template DNA. As with the protein detection
described above, the bacterial inoculum was washed repeatedly in
PBS before use. While a faint amplicon was generated when pre-
cipitated DNA from supernatant processed at time zero was used
as the template, the amplicon generated after 60 min infection was
greater in intensity, indicating a higher concentration of template
DNA (Fig. 6B). No amplicon was generated when precipitated
DNA from the supernatant of mock-infected 5637 cells was used
as the template (Fig. 6B). The presence of bacterial DNA and in-
tracellular proteins in the supernatant under conditions shown to
stimulate release of YbcLy, is consistent with a model in which
bacterial lysis mediates this release.

To quantify bacterial death directly, we employed fluorescence
microscopy after bacterial staining with a viability kit to visualize
and enumerate bacteria with intact membranes (live; green) ver-
sus bacteria with severely compromised membranes (dead; red).
UTI89 was incubated in RPMI in the presence or absence of 5637
cells, conditions shown to stimulate significantly different levels of
YbcLyq release. After 1 h of incubation in RPMI, 2.48% (£0.57%
[SEM]) of the total bacteria were dead (Fig. 6C). However, the
percentage of dead bacteria isolated from the medium increased
approximately 5.6-fold to 13.8% (*3.63%) after 1 h of incubation
in the presence of 5637 cells (Fig. 6C) (P < 0.05). Of note, only
very rare “ghosts” (bacterial remnants not containing DNA) were
evident when a blue-fluorescent antibody combination against
bacterial envelope components was included (data not shown).
The significant increase in bacteria with severely compromised
membranes upon exposure to uroepithelial cells further impli-
cates bacterial death as the mechanism by which YbcLyy is re-
leased into the extracellular milieu.

DISCUSSION

The present study furthers our understanding of the mechanism
by which UPEC-encoded YbcL is liberated from the bacterial
periplasm and influences the innate immune response in the blad-
der. Suppression of PMN migration by purified YbcL,; required
the presence of bladder epithelial cells. YbcL1; was released from
the periplasm in soluble form, though independent of the T2SS
and T4P conserved in nonpathogenic and uropathogenic E. coli.
Liberation of YbcLy;1; from the periplasm occurred specifically in
response to uroepithelial cells and was maximal when UPEC and
bladder epithelial cells were in close proximity. Lastly, UPEC
death upon exposure to bladder epithelial cells implicates bacte-
rial lysis as the mechanism by which YbcLyy is released from the
periplasm.

As purified YbcLy; had no effect on PMN migration in the
absence of bladder epithelial cells, we conclude that YbcL,; does
not inhibit PMN chemotaxis directly. These data suggest that the
site of action of YbcLy; is the uroepithelium, though purified
YbcL; was detected solely in the supernatant and not in the 5637
cell lysate. Given the low concentration of YbcLy,; sufficient to
suppress PMN migration (9), it is possible that the amount of
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purified protein associated with the 5637 cell lysate was too low to
detect by Western blotting, even when larger dishes were used.
When UPEC was physically separated from bladder epithelial
cells, YbcL,; was not detected in 5637 cell lysates, further dem-
onstrating that bacterial binding or internalization is required for
YbcLyy to reach the cell interior. YbcLy,p was released by UPEC
in soluble form rather than as OMV cargo, and a mechanism by
which YbcLy; could traverse the epithelial membrane in the ab-
sence of bacterial internalization is not obvious. Taken together,
these data support a model in which YbcL; 1 acts on uroepithelial
cells from the extracellular milieu.

The specificity of YbcLy release during UPEC infection of
uroepithelial cells also supports a model in which the bladder
epithelium, rather than PMN, is the site of YbcLpy activity. The
spatial relationship between the bacterial inoculum and host cells
influences the magnitude of YbcL;, release from the periplasm.
Supernatant YbcLy; 1y levels were lower when close association be-
tween UPEC and bladder epithelial cells was limited through mu-
tation of type 1 pili, addition of mannose, interposition of a phys-
ical barrier, or use of conditioned medium, indicating that
proximity augments YbcL,; release. While the component(s) of
the conditioned medium associated with YbcL::TEM-1 release ap-
pears to be largely heat stable and constitutively expressed by 5637
cells, additional work is required to identify this molecule(s). One
explanation for these observations is that microenvironments at
the bladder epithelial surface, where the local concentration of
molecules secreted by 5637 cells would be highest, are responsible
for the augmented YbcLy; release. However, it is also possible
that constituents of the bladder epithelial surface contribute to
release of YbcLyp; from the periplasm.

Our interrogation of conserved secretion systems demon-
strated that YbcLy release is independent of the T2SS and T4P.
We have not generated a UPEC mutant deficient in both systems,
as it is unlikely that the T2SS and T4P function redundantly to
secrete YbcLy . Though autotransporters contribute to UPEC
pathogenesis (29, 30), it is unlikely that YbcLy 1 belongs to the
T5SS family given the lack of homology (31). Though an as-yet-
unidentified secretion system could be responsible for mediating
YbcLyq; secretion, our subsequent experiments implicated bacte-
rial death as the mechanism by which YbcLyy is liberated from
the bacterial cell, a novel mode of delivery for a UPEC exoprotein.
First, multiple bacterial intracellular proteins and DNA were de-
tected in supernatants overlying UPEC-infected bladder epithelial
cells. While secretion systems exist to deliver cytoplasmic and
periplasmic proteins as well as bacterial DNA to the extracellular
space, it is unlikely that the coordinated activity of multiple such
systems is responsible for the simultaneous detection of all these
molecules in the supernatant. Second, bacterial death was sub-
stantially augmented upon exposure to bladder epithelial cells.
Our initial efforts to detect bacterial death by plating for survival
revealed an overall increase in CFU, reflecting interval bacterial
growth (M. Lau and D. Hunstad, unpublished data). Using a flu-
orescence-based approach, significantly more bacteria with se-
verely compromised membranes (representing a prelytic state)
were observed upon UPEC exposure to bladder epithelial cells,
correlating with increased release of YbcLy . Future work will
specify whether the presence of bladder epithelial cells and derived
molecules provokes this death via a bacterial mechanism (e.g., a
toxin-antitoxin system or bacteriophage-mediated lysis) or via a
eukaryotic mechanism (e.g., antimicrobial peptides).
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Our studies contribute to a model of the early host-pathogen
interactions occurring upon introduction of UPEC into the mam-
malian bladder. The observed proximity-dependent increase in
YbcLyq; release suggests that bacteria nearest the uroepithelial
surface are the minority that undergo lysis. Given the potency of
YbcLy in suppressing PMN migration (9), lysis of very few bac-
teria at the epithelial surface would likely release a sufficient
amount of YbcLy to exert alocal effect on an epithelium-derived
target, either secreted or present in the apical membrane. Spatially
controlled release of YbcL,; at the epithelial surface would max-
imize the probability of target binding and may explain how a low
concentration of YbcLy; is sufficient to suppress PMN migration
despite the potential for diffusion into the bladder lumen. Though
UPEC lysis would likely release bacterial products capable of acti-
vating host proinflammatory signaling, UPEC also encodes effec-
tors (e.g., HlyA and TcpC) that block these signaling cascades (32,
33). Liberated YbcL,; would inhibit early migration of PMN into
the bladder lumen, extending a critical interval in which surviving
UPEC can invade the bladder epithelium in the absence of phago-
cyte pressure. As shown in multiple studies, accessing the intracel-
lular niche protects UPEC from the PMN that ultimately arrive
(34, 35), facilitating the development of the intracellular bacterial
community that is critical to the propagation of infection.

Release of YbcLy,; during UPEC death represents an example
of bacterial altruism, a type of cooperation where some bacteria in
a population benefit, directly or indirectly, at a cost to others (36).
Altruism has been described for other bacterial pathogens and is
proposed to arise when the bacterial population is clonal, the in-
fectious dose is small, and the benefit is significant (36-39), con-
ditions that likely characterize UPEC as it colonizes the human
bladder. YbcL; activity may therefore enable a very small (and
otherwise insufficient) UPEC inoculum to establish the foothold
required to initiate cystitis. A more detailed understanding of the
molecular target and function of YbcLy,1; and contemporaneously
expressed UPEC effectors may illuminate strategies for prevention
of symptomatic infection in susceptible host populations.
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