3,811 research outputs found

    Library Design in Combinatorial Chemistry by Monte Carlo Methods

    Full text link
    Strategies for searching the space of variables in combinatorial chemistry experiments are presented, and a random energy model of combinatorial chemistry experiments is introduced. The search strategies, derived by analogy with the computer modeling technique of Monte Carlo, effectively search the variable space even in combinatorial chemistry experiments of modest size. Efficient implementations of the library design and redesign strategies are feasible with current experimental capabilities.Comment: 5 pages, 3 figure

    Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control

    Get PDF
    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m

    Resonant Particle Heating of an Electron Plasma by Oscillating Sheaths,” Phys

    Get PDF
    The first unambiguous measurements of a bounce-resonance effect in a non-neutral plasma are presented. Two striking signatures are observed when a magnetized electron column is heated by oscillating an end sheath. First, the heating rate increases by a factor of 10 4 as the oscillation frequency is increased by a factor of 10 near the thermal electron bounce frequency. Second, the heating is enhanced when the sheaths at both ends are oscillated out of phase, but is suppressed when they are in phase. The measured rates are in quantitative agreement with a resonant particle heating theory. [S0031-9007(98

    Blending Geospatial Technology and Traditional Ecological Knowledge to Enhance Restoration Decision-Support Processes in Coastal Louisiana

    Get PDF
    More informed coastal restoration decisions have become increasingly important given limited resources available for restoration projects and the increasing magnitude of marsh degradation and loss across the Gulf Coast. This research investigated the feasibility and benefits of integrating geospatial technology with the traditional ecological knowledge (TEK) of an indigenous Louisiana coastal population to assess the impacts of current and historical ecosystem change on community viability. The primary goal was to provide coastal resource managers with a decision-support tool that allows for a more comprehensive method of assessing localized ecological change in the Gulf Coast region, which can also benefit human community sustainability. Using remote sensing (RS) and geographic information systems (GIS) mapping products, integrated with a coastal community’s TEK to achieve this goal, the research team determined a method for producing vulnerability/sustainability mapping products for an ecosystem-dependent livelihood base of a coastal population based on information derived from RS imagery prioritized with TEK. This study also demonstrates how such an approach can engage affected community residents who are interested in determining and addressing the causes and mitigating the decline of marsh habitat. Historical image data sets of the study area were acquired to understand evolution of land change to current conditions and project future vulnerability. Image-processing procedures were developed and applied to produce maps that detail land change in the study area at time intervals from 1968 to 2009. This information was combined in a GIS with acquired TEK and scientific data sets relating to marsh vegetation health and vulnerability characteristics to produce mapping products that provide new information for use in the coastal restoration decision-making process. This information includes: (1) marsh areas that are most vulnerable; and (2) the areas that are most significant to community sustainability

    Optimizing crop production through control of water and salinity levels in the soil

    Get PDF
    Sizable investments have been made and continue to be made throughout the world to develop irrigation potentials. Recent food shortages have heightened the concern for obtaining greater returns to irrigation through improved water management and use. A knowledge of how plant growth cycles relate to moisture and salinity levels in the root zone is prerequisite to developing practical ways of maintaining optimum conditions for maximum production per unit of water concerned. This research further defines the role of irrigation timing and salinity management on crop production, and proposes practical techniques for predicting the crop response to management measures. Some of the advantages and special features of the research program outlined by the report are listed as follows: 1. The experimental design is unique in that a sprinkler line is used as a single source of water. This approach provides large volumes of yield data as influenced by water supplies available to the crop. These data will provide information on the following: a. Accurate evaluation of the basic water requirements of crops. b. The optimal sequencing of deficits during crop growth stages. c. The establishment of yield versus evapotranspiration relationships over the entire range of wter supply from rainfall (dryland) to over-irrigation. d. An evaluation of soil water holding capacities in terms of its contributions to the water needs of the crop. This information provides guidance on how to best utilize the root system of a given crop type as a water gathering tool in terms of time during the growing season. For example, planting date, plant spacing, and fertilizer practices will be influenced by this information. 2. The experimental layout is versatile in that it lends itself to a study of the effects on plant growth of input parameters other than water, such as fertility levels and plant spacing. 3. The design can be readily adapted to accommodate several varieties and/or species in the same experiment. 4. The research results are practical and generally applicable to a wide range of crop, climate, soil, and water supply (non site specific and site specific) conditions. 5. The research provides a clear demonstration (both visual and quantitative) of the beneficial effects of proper management practices on crop production. 6. The research deals with both domestic and international water problems involving crop production, namely, the influence of available soil measure and soil salinity on plant yields. 7. The research techniques are readily adaptable to application in developing countries. a. A sprinkler system for irrigation is not necessary though desireable. b. The research procedures are simple, inexpensive, easy to perform, and yet provide much information. 8. The research involves the join efforts of several institutions and utilizes highly experienced research principal investigators who have a proven record of effectively working together as an integrated team. 9. The validity of the research approach and the viability of the results have been demonstrated by current research. The main tasks remaining are to broaden the crop base and to test and demonstrate the applicability of the results to other areas throughout the world

    Density of Superfluid Helium Droplets

    Full text link
    The classical integral cross sections of large superfluid 4He_N droplets and the number of atoms in the droplets (N=10^3-10^4) have been measured in molecular beam scattering experiments. These measurements are found to be in good agreement with the cross sections predicted from density functional calculations of the radial density distributions with a 10-90 % surface thickness of 5.7\AA. By using a simple model for the density profile of the droplets a thickness of about 6-8\AA is extracted directly from the data.Comment: 27 pages, REVTeX, 5 postscript figure

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth
    • …
    corecore