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Resonant Particle Heating of an Electron Plasma by Oscillating Sheaths
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The first unambiguous measurements of a bounce-resonance effect in a non-neutral plasm
presented. Two striking signatures are observed when a magnetized electron column is heate
oscillating an end sheath. First, the heating rate increases by a factor of104 as the oscillation
frequency is increased by a factor of 10 near the thermal electron bounce frequency. Second
heating is enhanced when the sheaths at both ends are oscillated out of phase, but is suppresse
they are in phase. The measured rates are in quantitative agreement with a resonant particle h
theory. [S0031-9007(98)06580-6]

PACS numbers: 52.25.Wz, 52.20.Dq, 52.50.Gj
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Resonant interactions between particles and fields
of broad interest in plasma physics. Landau damping
of plasma waves occurs in nearly all plasmas, by partic
whose velocities are resonant with the phase velocity of t
wave [2], or whose bounce frequencies are resonant w
the wave frequency [3]. Magnetic mirror plasmas [4] an
some plasma processing discharges [5] are heated by o
lating fields which are resonant with the bounce motions
the electrons. In the magnetosphere, bounce resonance
trapped particles may excite magnetohydrodynamic wav
[6] or lead to particle diffusion [7]. In Penning traps, oscil
lating voltages resonant with the guiding center motions
the trapped particles are used to improve particle confin
ment [8]. Resonance between guiding center motions a
static field asymmetries has long been thought to limit t
confinement times in magnetic mirror [9] and non-neutr
plasma traps [10], but no clear experimental signature h
been found.

Here, we present the first unambiguous measureme
of a bounce resonance effect in a non-neutral plasma.
magnetized electron column is heated through reson
interaction between axially bouncing electrons and
oscillating end sheath driven by an oscillating voltag
The measured heating rates are orders of magnitude la
than those due to “adiabatic” oscillation of the end sheat
[11]. The resonant heating has two striking signature
First, the heating rate increases by a factor of104 as the
oscillation frequency is increased by a factor of 10 ne
the thermal electron bounce frequency. Second, if t
same voltage is used to oscillate the sheaths at both e
of the plasma simultaneously, the heating is enhanc
when the sheaths oscillate out of phase, but the heat
is suppressed when they are in phase.

The measured rates are in quantitative agreement wit
resonant particle theory by Crooks and O’Neil [12]. Th
theory starts from the Fermi acceleration model [13]
particles bouncing between a fixed and a moving wa
Resonant particles undergo large excursions in veloc
space due to coherent “kicks” from the moving wal
Interelectron collisions knock the electrons in and o
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of resonance, causing irreversible heating. This veloci
space transport is analogous to neoclassical configurati
space transport which occurs in fusion plasmas [14].

We confine the electron plasmas in a cylindrica
Penning-Malmberg trap [11], shown schematically
Fig. 1. Electrons emitted from a tungsten filament a
confined in a series of conducting cylinders of radiu
Rw  1.27 cm enclosed in a vacuum can at 4.2 K. Back
ground pressure is measured to beP & 10211 torr. The
electrons are confined axially by applyingVc  2200 V
on cylinders 1 and 5; radial confinement is provide
by a uniform axial magnetic fieldB  20 kG. The
trapped electron plasma typically has initial densi
109 # n # 1010 cm23, radiusRp ø 0.06 cm, and a char-
acteristic radial expansion timetm ø 100 1000 sec. The
apparatus is operated in an inject/manipulate/dump cyc
and has a shot-to-shot reproducibility ofdnyn , 1%.

The z-integrated density of the plasma is measure
by dumping the electrons onto the end collectors,
grounding cylinder 5. A histogram of thez-integrated
density,Qsrd, is obtained directly from the charge on th
five collectors.

The parallel plasma temperature,Tk, is measured by
slowly ramping the voltage on cylinder 5 to ground
and measuring the number of electrons which esca
as a function of the confining voltage. Four shots a
averaged, givingTk with a precision of about 10%. In the
experiments described in this paper, typical temperatu

FIG. 1. Schematic of the cylindrical apparatus and electr
plasma. Cylinders 2 and 4 are the same length.
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are 0.2 # Tk # 20 eV, which givesTk to T' collisional
equilibration rates [11]n'k ; s8y15d

p
p nb2y lnsrcybd

in the range103 # n'k # 105 sec21, and thermal speeds
in the range2 3 107 # y ;

p
Tkym # 2 3 108 cmys.

We calculate thez-dependent plasma densitynsr , zd
and space charge potentialfsr, zd from the measured
z-integrated chargeQsrd and Tk, by numerically solving
Poisson’s equation, assuming that the electrons are in lo
thermal equilibrium along each field line. That is, we
assume

nsr , zd  n0srd exphefsr, zdyTkj ,

wheren0srd is obtained by requiring that
R

nsr , zd dz 
Qsrd. The density and potential inside the plasm
are nearly uniform inz, but both decrease abruptly in
end sheaths of characteristic thicknesslD ø 0.01 cm.
Typical plasma lengths are3 , Lp , 5 cm. The indi-
vidual electrons bounce back and forth axially betwee
the plasma ends. The bounce frequency for a therm
electron is typically2 # fb ; yy2Lp # 30 MHz, such
thatfb ¿ n'k.

We heat the plasma by applying a sinusoidally oscilla
ing voltageVh to cylinder 2, causing the end sheath to os
cillate in z. The amplitude of the applied heating voltag
is typically 0.5 # Vh # 10 V, and the frequency ranges
from 0.1 # fh # 20 MHz. After heating the plasma, we
wait several equilibration timesn21

'k before measuring the
temperature, to allow the electrons to reach a local the
mal equilibrium with Tk  T'  T . The heating rate
dTydt is found by measuring the timedt required for
the plasma temperature to rise bydT ø 0.1T ; typically
1 msec# dt # 40 ms.

Previous studies [11] measured heating in theadiabatic
regime offh ø fb. Here, the applied voltage causesLp

and Tk to oscillate in phase with the voltage, resultin
in irreversible heating due to the collisional relaxatio
betweenT' and Tk. This adiabatic heating occurs at a
rate given by

dTabd

dt


4
3

n'kT

µ
dL
Lp

∂2
"

f2
h

f2
h 1 9n

2
'ky4p2

#
, (1)

wheredL ~ Vh is the amplitude of the oscillation in the
plasma length. Note that iffh ¿ n'k, then the heating
rate is expected to be independent offh. This is observed
experimentally, as shown by thefh , 1 MHz data in
Fig. 2. The dashed line shows Eq. (1) withdLyLp 
0.0042. Here,n'k  45 000 sec21 andfb  4.8 MHz.

Resonant particle heating causesdTydt in Fig. 2 to
increase by over 4 orders of magnitude forfh . 1 MHz.
That is, energy is given to those electrons with boun
frequenciesfb  fhy,, with ,  1, 2, 3, . . . . This can be
verified experimentally by applying an oscillating voltag
to both cylinders 2 and 4 (both cylinders are the sam
length), so that the sheaths at both ends of the plas
oscillate in z. We use the samefh and Vh on both
cylinders, but phase shift the voltage on one cylinder a
354
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FIG. 2. Measured heating rates versus frequency of appl
voltage. Adiabatic heating dominates at lowfh, while resonant
heating dominates at highfh (enhanced by damped-mode
heating near 7 and 11 MHz). The dashed curve is from Eq. (
and the solid curve is from Eq. (2), both withdLyLp 
0.0042.

amountuh with respect to the other. When the voltage
on the two cylinders are in phasesuh  0d, both ends
are compressed at the same time, so the plasma len
oscillates while its center of mass remains fixed.
contrast, whenuh  p , the plasma length stays constan
while its center of mass oscillates inz.

Figure 3 shows that low-frequency adiabatic heatin
is maximized when the end compressions are in pha
whereas higher frequency resonant heating is maximiz
when the compressions are out of phase. The squa
show the measured heating rate forfh  0.2 MHz, where
the maximum heating occurs foruh  0; at least 5 times
less heating occurs foruh  p. This is consistent with
adiabatic heating, since the anisotropy betweenT' andTk

is proportional to the change in length of the plasma. T
dashed curve shows the prediction of adiabatic theo
which is proportional to cos2suhy2d. Resonant heating
is negligible here, sincefh ø fb  2.5 MHz.

The diamonds in Fig. 3 show the heating rate forfh 
2 MHz , fb. Now the heating is smallest foruh  0
and 10 times larger foruh  p . This is consistent with
bounce resonance heating but not adiabatic heating.
Du be the change in the speed of an electron wh
it reflects from an oscillating sheath at the ends
the plasma. Whenuh  p, an electron with bounce
frequencyfb  fh (i.e., ,  1) receives identicalDu at
each end of the plasma, causing a net change in the sp
of the electron after one bounce orbit. In contrast, wh
uh  0, the Du are of opposite sign at each end of th
plasma, resulting in no net change in speed. That
the Du imparted by one oscillating sheath destructive
interfere with theDu imparted by the other.

However, the heating rate foruh  0 is over twice as
large atfh  2 MHz as at 0.2 MHz. This is because only
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FIG. 3. Measured heating rates when both ends of the plas
are oscillated versus phase difference between the ends. A
batic (squares) and resonant (diamonds) heating rates have
posite dependence onuh. The dashed and solid curves show
the predictions of the adiabatic and resonant theories, resp
tively, with dLyLp  0.0022. Here, n  2.1 3 109 cm23,
Lp  4.86 cm, T  0.31 eV, andfb  2.5 MHz.

the odd, resonances suffer destructive interference f
uh  0. The Du received by electrons withfb  fhy,,
,  2, 4, 6, . . . constructivelyinterfere atuh  0, giving
a nonzero heating rate. These higher order resonan
should cause less heating, because the resonant elect
are slower and encounter the oscillating sheaths le
frequently; this agrees with our measurements.

Note that the dependence ofdTydt on uh is not due to
the excitation of axial plasma modes, which would cau
heating as they damp. A higher resolution frequency sc
of the heating rate shows sharp peaks atfh ø 7 MHz and
fh ø 11 MHz, each about 200 KHz wide and105 eVys
high. While these modes cause the “steps” in the hig
fh data in Fig. 2, the narrowness of the peaks and th
occurrence only forfh . fb indicates that the heating for
fh # fb is due to single particle resonances only.

The dependence of the resonant heating rates on
amplitude of the applied voltageVh and on the plasma
temperatureT are shown in Figs. 4 and 5, respectively
The heating rate scales asV 2

h over 2 orders of magnitude,
and asT21y2 over 1 order of magnitude.

We compare our measurements to a bounce-resona
theory by Crooks and O’Neil [12]. The theory was
originally developed to predict the radial electron flux in
“rotational pumping” transport due to resonances betwe
electron bounce and rotation frequencies. The predicti
for the flux G [Eq. (98) in Ref. [12] ] is converted to
a heating rate prediction by using local conservation
energy, i.e.,2eG ? E  3

2 ndTydt. Since the potential
is uniform inside the plasma and abruptly decreases at
ends, the bounce length of an electron is independent
its energy. The applied voltage causes the position of t
end sheath to oscillate as
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FIG. 4. Measured heating rate is proportional to the square
the amplitude of the applied voltage. The solid curve sho
the prediction of Eq. (2) withdLyLp  0.0024Vh.

zendstd  dL sins2pfhtd ,

wheredL ø Lp . The magnetic field effectively confines
the electrons in one-dimension between a fixed and
moving wall, just as in the Fermi acceleration model [13
Each time an electron hits the moving wall, its spee
changes byDu ; 2ywall  4pfhdL coss2pfhtd. In the
absence of collisions, Ref. [13] shows that for electro
with resonant bounce frequencies,fb ø fhy,, the Du
add coherently, producing cyclical orbits in velocit
space over multiple bounces. Heating arises due to
collisional exchange of energy between resonant a
nonresonant electrons. Crooks and O’Neil calculate t
heating rate in the “plateau” regime, where the resona
electrons travel only part way through a velocity-spa
cycle before colliding with another electron. In that cas
the total change in speed of a resonant electron betw

FIG. 5. Measured heating rate decreases slowly with plas
temperature. The solid curve shows the prediction of Eq.
with dLyLp  0.0042 andfb  6.22T seVd MHz.
355
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collisions is

Dy ø 4pfhdLsfbynd ,

wheren is the rate at which electrons are knocked out
resonance due to collisions. The collisions give rise
velocity-space diffusion with step sizeDy. This results
in a velocity space flux of

Gy  2nsDyd2 ≠f
≠y

,

where thefsy, td is the axial velocity distribution func-
tion. Linearizing f as fsy, td  f0syd 1 f1sy, td, and
using a velocity space continuity equation,≠f1y≠t 1

≠Gyy≠y  0, the heating rate is calculated from the flu
by

≠T
≠t


Z 1

2
mey2 ≠f1

≠t
dy

 2
Z 1

2
mey2 ≠Gy

≠y


Z
meyGy dy .

Assuming that only resonant electrons contribute
the heating rate, the integral becomes a sum evalua
at speedsy,  2fhLpy,. Performing this calculation
rigorously, assumingf0 is a Maxwellian and assuming a
resonance width ofdy ø nLpy,p , gives

dT
dt


s2pd3y2fhT
3sLpydLd2

X̀
,1

µ
fh

,fb

∂5

exp

∑
2

1
2

µ
fh

,fb

∂2∏
. (2)

Note that the heating rate is independent ofn (hence the
name plateau regime). When the two ends of the plas
oscillate with phase differenceuh, thedL term in Eq. (2)
changes to2dL sinsuhy2d for odd, and to2dL cossuhy2d
for even,.

Since all quantities in the theory are measurable,
adjustable parameters are needed to compare it with
data. We determine the amplitudedL of the wall oscilla-
tion from Eq. (1) by measuring the adiabatic heating ra
dTydt at low fh. Both n'k and adiabatic heating have
been previously measured on our apparatus and show
be in good agreement with theory. These measureme
show thatdL ~ Vh, and typically givedLyLp , 0.01.

The predictions of Eq. (2) are shown as solid curves
Figs. 2 to 5. In Figs. 2 to 4, quantitative agreement with
a factor of 2 is seen over a wide range of parameters a
heating rates. Less accurate agreement is seen in Fig
where the measured heating rates decrease more slo
with temperature than do the theoretical rates.

The reason for this discrepancy is not known. On
possibility is that asT is increased, the collision rate de
creases until the plasma is in the “banana” regime [1
rather than the plateau regime, so that Eq. (2) is not
plicable. However, estimates of heating in the bana
regime indicate that it is weaker than heating in th
plateau regime, and decreases even faster with incre
356
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ing temperature. This is the opposite of the observe
behavior. Another possibility is thatdL increases with
temperature; however, numerical calculations indicate n
such dependence.

Numerical work on Fermi acceleration predicts tha
electrons with fb , 2psdLyLpd1y2fh should move
stochastically through velocity space [13], which violate
the assumption of Crooks and O’Neil of discrete resonan
electron orbits. However, stochasticity should simply
increase the rate at which electrons enter and lea
resonance, thus increasing the effective collision ra
n. Since the heating rate is independent ofn, Eq. (2)
should still be valid in the stochastic regime [15]. This is
verified experimentally by the highestVh data in Fig. 4,
wheredLyLp  0.038.

The close agreement between data and theory sugge
that resonant particle rotational pumping [12] should b
observable in the proper regime. Furthermore, it sugges
that asymmetry-induced transport in non-neutral plasma
[16] may have a resonant particle component despite th
current lack of experimental evidence. This is especiall
true in the case of asymmetries placed at the ends of
plasma column, such as the “rotating wall” [17].
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