116 research outputs found

    Modal scattering at an impedance transition in a lined flow duct

    Get PDF
    An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1,-8 <x <8 with mean flow Mach number M > 0 and a hard wall along x <0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t ), no more singular than h = O(x1/2) for x ¿ 0. A mode, incident from x <0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = O(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z(¿) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ¿ ¿ 0, the modulus tends to |R001| ¿ (1 + M)/(1 - M) without and to 1 with Kutta condition, while the end correction tends to8without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow

    Excavation of an early 17th-century glassmaking site at Glasshouse, Shinrone, Co. Offaly, Ireland

    Get PDF
    An archaeological research excavation was conducted in the area immediately surrounding an upstanding glassmaking furnace near Shinrone, Co. Offaly, Ireland. It dates to the early to mid 17th century and was built and operated by French Huguenots, probably de Hennezells (de Hennezel/Henzeys/Hensie) who had settled in this region as part of the Crown plantation of King’s County (now Co. Offaly). This furnace, which employed wood rather than coal as a fuel, is a very rare survival, with no other upstanding examples known in Ireland, Britain or the Lorraine region of France where the form probably originated

    Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium

    Get PDF
    A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.New methods for child psychiatric diagnosis and treatment outcome evaluatio

    Information and digital literacies; a review of concepts

    Get PDF
    A detailed literature reviewing, analysing the multiple and confusing concepts around the ideas of information literacy and digital literacy at the start of the millennium. The article was well-received, and is my most highly-cited work, with over 1100 citations

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Modal scattering at an impedance transition in a lined flow duct

    No full text
    An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1,-8 <x <8 with mean flow Mach number M > 0 and a hard wall along x <0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t ), no more singular than h = O(x1/2) for x ¿ 0. A mode, incident from x <0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the upstream running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = O(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z(¿) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ¿ ¿ 0, the modulus tends to |R001| ¿ (1 + M)/(1 - M) without and to 1 with Kutta condition, while the end correction tends to8without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow
    • …
    corecore