16 research outputs found

    Characterization of plasmodium lactate dehydrogenase and histidine-rich protein 2 clearance patterns via rapid on-bead detection from a single dried blood spot

    No full text
    A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/µL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria

    Plasmodium falciparum HRP2 ELISA for analysis of dried blood spot samples in rural Zambia

    No full text
    Background: Dried blood spots are commonly used for sample collection in clinical and non-clinical settings. This method is simple, and biomolecules in the samples remain stable for months at room temperature. In the field, blood samples for the study and diagnosis of malaria are often collected on dried blood spot cards, so development of a biomarker extraction and analysis method is needed. Methods: A simple extraction procedure for the malarial biomarker Plasmodium falciparum histidine-rich protein 2 (HRP2) from dried blood spots was optimized to achieve maximum extraction efficiency. This method was used to assess the stability of HRP2 in dried blood spots. Furthermore, 328 patient samples made available from rural Zambia were analysed for HRP2 using the developed method. These samples were collected at the initial administration of artemisinin-based combination therapy and at several points following treatment. Results: An average extraction efficiency of 70% HRP2 with a low picomolar detection limit was achieved. In specific storage conditions HRP2 was found to be stable in dried blood spots for at least 6 months. Analysis of patient samples showed the method to have a sensitivity of 94% and a specificity of 89% when compared with microscopy, and trends in HRP2 clearance after treatment were observed. Conclusions: The dried blood spot ELISA for HRP2 was found to be sensitive, specific and accurate. The method was effectively used to assess biomarker clearance characteristics in patient samples, which prove it to be ideal for gaining further insight into the disease and epidemiological applications

    Evidence for histidine-rich protein 2 immune complex formation in symptomatic patients in Southern Zambia

    Get PDF
    Abstract Background Rapid diagnostic tests based on histidine-rich protein 2 (HRP2) detection are the primary tools used to detect Plasmodium falciparum malaria infections. Recent conflicting reports call into question whether α-HRP2 antibodies are present in human host circulation and if resulting immune complexes could interfere with HRP2 detection on malaria RDTs. This study sought to determine the prevalence of immune-complexed HRP2 in a low-transmission region of Southern Zambia. Methods An ELISA was used to quantify HRP2 in patient sample DBS extracts before and after heat-based immune complex dissociation. A pull-down assay reliant on proteins A, G, and L was developed and applied for IgG and IgM capture and subsequent immunoprecipitation of any HRP2 present in immune complexed form. A total of 104 patient samples were evaluated using both methods. Results Immune-complexed HRP2 was detectable in 17% (18/104) of all samples evaluated and 70% (16/23) of HRP2-positive samples. A majority of the patients with samples containing immune-complexed HRP2 had P. falciparum infections (11/18) and were also positive for free HRP2 (16/18). For 72% (13/18) of patients with immune-complexed HRP2, less than 10% of the total HRP2 present was in immune-complexed form. For the remaining samples, a large proportion (≥ 20%) of total HRP2 was complexed with α-HRP2 antibodies. Conclusions Endogenous α-HRP2 antibodies form immune complexes with HRP2 in the symptomatic patient population of a low-transmission area in rural Southern Zambia. For the majority of patients, the percentage of HRP2 in immune complexes is low and does not affect HRP2-based malaria diagnosis. However, for some patients, a significant portion of the total HRP2 was in immune-complexed form. Future studies investigating the prevalence and proportion of immune-complexed HRP2 in asymptomatic individuals with low HRP2 levels will be required to assess whether α-HRP2 antibodies affect HRP2 detection for this portion of the transmission reservoir

    Prostaglandin E<sub>2</sub> Regulation of Macrophage Innate Immunity

    No full text
    Globally, maternal and fetal health is greatly impacted by extraplacental inflammation. Group B <i>Streptococcus</i> (GBS), a leading cause of chorioamnionitis, is thought to take advantage of the uterine environment during pregnancy in order to cause inflammation and infection. In this study, we demonstrate the metabolic changes of murine macrophages caused by GBS exposure. GBS alone prompted a delayed increase in lactate production, highlighting its ability to redirect macrophage metabolism from aerobic to anaerobic respiration. This production of lactate is thought to aid in the development and propagation of GBS throughout the surrounding tissue. Additionally, this study shows that PGE<sub>2</sub> priming was able to exacerbate lactate production, shown by the rapid and substantial lactate increases seen upon GBS exposure. These data provide a novel model to study the role of GBS exposure to macrophages with and without PGE<sub>2</sub> priming
    corecore