144 research outputs found
A rapid cell-free expression and screening platform for antibody discovery
Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly
Multi-year patterns in testosterone, cortisol and corticosterone in baleen from adult males of three whale species
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 6 (2018): coy049, doi:10.1093/conphys/coy049.Male baleen whales have long been suspected to have annual cycles in testosterone, but due to difficulty in collecting endocrine samples, little direct evidence exists to confirm this hypothesis. Potential influences of stress or adrenal stress hormones (cortisol, corticosterone) on male reproduction have also been difficult to study. Baleen has recently been shown to accumulate steroid hormones during growth, such that a single baleen plate contains a continuous, multi-year retrospective record of the whale’s endocrine history. As a preliminary investigation into potential testosterone cyclicity in male whales and influences of stress, we determined patterns in immunoreactive testosterone, two glucocorticoids (cortisol and corticosterone), and stable-isotope (SI) ratios, across the full length of baleen plates from a bowhead whale (Balaena mysticetus), a North Atlantic right whale (Eubalaena glacialis) and a blue whale (Balaenoptera musculus), all adult males. Baleen was subsampled at 2 cm (bowhead, right) or 1 cm (blue) intervals and hormones were extracted from baleen powder with methanol, followed by quantification of all three hormones using enzyme immunoassays validated for baleen extract of these species. Baleen of all three males contained regularly spaced peaks in testosterone content, with number and spacing of testosterone peaks corresponding well to SI data and to species-specific estimates of annual baleen growth rate. Cortisol and corticosterone exhibited some peaks that co-occurred with testosterone peaks, while other glucocorticoid peaks occurred independent of testosterone peaks. The right whale had unusually high glucocorticoids during a period with a known entanglement in fishing gear and a possible disease episode; in the subsequent year, testosterone was unusually low. Further study of baleen testosterone patterns in male whales could help clarify conservation- and management-related questions such as age of sexual maturity, location and season of breeding, and the potential effect of anthropogenic and natural stressors on male testosterone cycles.This work was supported by (1) the Arizona Board of Regents Technology Research Initiative Fund; (2) the Center for Bioengineering Innovation at Northern Arizona University; (3) the Greenland Institute of Natural Resources; (4) the Woods Hole Oceanographic Institution Ocean Life Institute and (5) Fisheries and Ocean Canada’s (DFO) Priorities and Partnership Strategic Initiatives Fund and Oceans Protection Plan
CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17
We present a study of 16 HI-detected galaxies found in 178 hours of
observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES).
We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <=
0.183 which are among the worst affected by radio frequency interference (RFI).
While this represents only 10% of the total frequency coverage and 18% of the
total expected time on source compared to what will be the full CHILES survey,
we demonstrate that our data reduction pipeline recovers high quality data even
in regions severely impacted by RFI. We report on our in-depth testing of an
automated spectral line source finder to produce HI total intensity maps which
we present side-by-side with significance maps to evaluate the reliability of
the morphology recovered by the source finder. We recommend that this become a
common place manner of presenting data from upcoming HI surveys of resolved
objects. We use the COSMOS 20k group catalogue, and we extract filamentary
structure using the topological DisPerSE algorithm to evaluate the \hi\
morphology in the context of both local and large-scale environments and we
discuss the shortcomings of both methods. Many of the detections show disturbed
HI morphologies suggesting they have undergone a recent interaction which is
not evident from deep optical imaging alone. Overall, the sample showcases the
broad range of ways in which galaxies interact with their environment. This is
a first look at the population of galaxies and their local and large-scale
environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA
Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei.
Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales
Attentional differences in a driving hazard perception task in adults with autism spectrum disorders
The current study explored attentional processing of social and non social stimuli in ASD within the context of a driving hazard perception task. Participants watched videos of road scenes and detected hazards while their eye movements were recorded. Although individuals with ASD demonstrated relatively good detection of driving hazards, they were slower to orient to hazards. Greater attentional capture in the time preceding the hazards’ onset was associated with lower verbal IQ. The findings suggest that individuals with ASD may distribute and direct their attention diferently when identifying driving hazards
Do Web-Based Interventions Improve Well-Being in Type 2 Diabetes? A Systematic Review and Meta-Analysis
BACKGROUND: Poor diabetes self-care can have a negative impact on psychological well-being and quality of life. Given the scarcity of traditional psychological support and the barriers to uptake of and attendance at face-to-face education programs, Web-based interventions are becoming a popular approach to provide an additional platform for psychological support in long-term conditions. However, there is limited evidence to assess the effect of Web-based psychological support in people with type 2 diabetes. OBJECTIVE: This systematic review is the first review to critically appraise and quantify the evidence on the effect of Web-based interventions that aim to improve well-being in people with type 2 diabetes. METHODS: Searches were carried out in the following electronic databases: MEDLINE, EMBASE, CINAHL, PsycINFO, and Cochrane Library. Reference lists were hand-searched. A meta-analysis was conducted for depression and distress outcomes. RESULTS: A total of 16 randomized controlled studies met the inclusion criteria for the systematic review and 9 were included in the meta-analyses. Theories were applied to the majority of the interventions. The most common behavior change techniques were "General information" and "Tracking/monitoring." Interventions with a duration of 2-6 months providing professional-led support with asynchronous and synchronous communication appeared to be associated with significant well-being outcomes. The pooled mean (95% confidence interval) difference between the intervention and control arms at follow-up on depression score was -0.31 (-0.73 to 0.11). The pooled mean difference on distress scores at follow-up was -0.11 (-0.38 to 0.16). No significant improvements in depression (P=.15) or distress (P=.43) were found following meta-analyses. CONCLUSIONS: While the meta-analyses demonstrated nonsignificant results for depression and distress scores, this review has shown that there is a potential for Web-based interventions to improve well-being outcomes in type 2 diabetes. Further research is required to confirm the findings of this review
Francisella tularensis Elicits IL-10 via a PGE2-Inducible Factor, to Drive Macrophage MARCH1 Expression and Class II Down-Regulation
Francisella tularensis is a bacterial pathogen that uses host-derived PGE2 to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE2 acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE2 can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensis
macrophage supernatant), which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 “resistant” class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE2 can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE2 drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE2, these results suggest that a yet-to-be-identified PGE2-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens
Experimental Observation of a New Attenuation Mechanism in <i>hcp</i>‐Metals That May Operate in the Earth's Inner Core
AbstractSeismic observations show the Earth's inner core has significant and unexplained variation in seismic attenuation with position, depth and direction. Interpreting these observations is difficult without knowledge of the visco‐ or anelastic dissipation processes active in iron under inner core conditions. Here, a previously unconsidered attenuation mechanism is observed in zinc, a low pressure analog of hcp‐iron, during small strain sinusoidal deformation experiments. The experiments were performed in a deformation‐DIA combined with X‐radiography, at seismic frequencies (∼0.003–0.1 Hz), high pressure and temperatures up to ∼80% of melting temperature. Significant dissipation (0.077 ≤ Q−1(ω) ≤ 0.488) is observed along with frequency dependent softening of zinc's Young's modulus and an extremely small activation energy for creep (⩽7 kJ mol−1). In addition, during sinusoidal deformation the original microstructure is replaced by one with a reduced dislocation density and small, uniform, grain size. This combination of behavior collectively reflects a mode of deformation called “internal stress superplasticity”; this deformation mechanism is unique to anisotropic materials and activated by cyclic loading generating large internal stresses. Here we observe a new form of internal stress superplasticity, which we name as “elastic strain mismatch superplasticity.” In it the large stresses are caused by the compressional anisotropy. If this mechanism is also active in hcp‐iron and the Earth's inner‐core it will be a contributor to inner‐core observed seismic attenuation and constrain the maximum inner‐core grain‐size to ≲10 km.</jats:p
Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures
Individual Differences in Processing Speed and Working Memory Speed as Assessed with the Sternberg Memory Scanning Task
The Sternberg Memory Scanning (SMS) task provides a measure of processing speed (PS) and working memory retrieval speed (WMS). In this task, participants are presented with sets of stimuli that vary in size. After a delay, one item is presented, and participants indicate whether or not the item was part of the set. Performance is assessed by speed and accuracy for both the positive (item is part of the set) and the negative trials (items is not part of the set). To examine the causes of variation in PS and WMS, 623 adult twins and their siblings completed the SMS task. A non-linear growth curve (nLGC) model best described the increase in reaction time with increasing set size. Genetic analyses showed that WMS (modeled as the Slope in the nLGC model) has a relatively small variance which is not due to genetic variation while PS (modeled as the Intercept in the nLGC model) showed large individual differences, part of which could be attributed to additive genetic factors. Heritability was 38% for positive and 32% for negative trials. Additional multivariate analyses showed that the genetic effects on PS for positive and negative trials were completely shared. We conclude that genetic influences on working memory performance are more likely to act upon basic processing speed and (pre)motoric processes than on the speed with which an item is retrieved from short term memory
- …