1,656 research outputs found

    Domino alkylation-cyclization reaction of propargyl bromides with thioureas/thiopyrimidinones: A new facile synthesis of 2-aminothiazoles and 5H-thiazolo[3,2-a]pyrimidin-5-ones

    Get PDF
    A new synthesis of 2-aminothiazoles and 5H-thiazolo[3,2-a]pyrimidin-5-ones was developed as a domino alkylation-cyclization reaction of propargyl bromides with thioureas and thioÂŹpyrimidinones, respectively. Domino reactions were performed under microwave irradiation leading to desired compounds in a few minutes and high yield

    Stabilizers and Destabilizers Controlling Cell Cycle Oscillators

    Get PDF
    Various destabilizing factors of the ubiquitin system contribute to the synchrony and unidirectionality of the cell cycle clock by finely tuning the activity of var- ious CDKs. The recent findings of hierarchical and connected waves of cyclin stabilizers highlight the complexity of this network

    Oncogenic aberrations of cullin-dependent ubiquitin ligases

    Get PDF
    Accumulating evidence points to a key role of the ubiquitin\u2013proteasome pathway in oncogenesis. Aberrant proteolysis of substrates involved in cellular processes such as the cell division cycle, gene transcription, the DNA damage response and apoptosis has been reported to contribute significantly to neoplastic transformation. Cullin-dependent ubiquitin ligases (CDLs) form a class of structurally related multisubunit enzymes central to the ubiquitin-mediated proteolysis of many important biolo- gical substrates. In this review, we describe the role of CDLs in the ubiquitinylation of cancer-related substrates and discuss how altered ubiquitinylation by CDLs may contribute to tumor development

    APC/CCdc20 Controls the Ubiquitin-Mediated Degradation of p21 in Prometaphase

    Get PDF
    During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumu- lates in G2 and is degraded again in prometa- phase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identi- fied a D box motif in p21 necessary for APC/ CCdc20-mediated ubiquitylation of p21. Overex- pression of Cdc20 or Skp2 destabilized wild- type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21+/+ prometaphase cells, but not in p21/ cells. Thus, in prometaphase Cdc20 positively regu- lates Cdk1 by mediating the degradation of p21. We propose that the APC/CCdc20-medi- ated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation

    Changes in genotoxic stress response, ribogenesis and PAP (3’-phosphoadenosine 5’-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds

    Get PDF
    Re‐establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation‐induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration−dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry‐back), were analysed. In contrast to desiccation‐tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry‐back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry‐back revealed altered rRNA accumulation profiles and up‐regulation of genes involved in ribogenesis control. The signal molecule PAP (3â€Č‐phosphoadenosine 5â€Č‐phosphate) accumulated during dry‐back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization

    Metabolic signatures of germination triggered by kinetin in Medicago truncatula

    Get PDF
    In the present work, non-targeted metabolomics was used to investigate the seed response to kinetin, a phytohormone with potential roles in seed germination, still poorly explored. The aim of this study was to elucidate the metabolic signatures of germination triggered by kinetin and explore changes in metabolome to identify novel vigor/stress hallmarks in Medicago truncatula. Exposure to 0.5 mM kinetin accelerated seed germination but impaired seedling growth. Metabolite composition was investigated in seeds imbibed with water or with 0.5 mM kinetin collected at 2 h and 8 h of imbibition, and at the radicle protrusion stage. According to Principal Component Analysis, inositol pentakisphosphate, agmatine, digalactosylglycerol, inositol hexakisphosphate, and oleoylcholine were the metabolites that mostly contributed to the separation between 2 h, 8 h and radicle protrusion stage, irrespective of the treatment applied. Overall, only 27 metabolites showed significant changes in mean relative contents triggered by kinetin, exclusively at the radicle protrusion stage. The observed metabolite depletion might associate with faster germination or regarded as a stress signature. Results from alkaline comet assay, highlighting the occurrence of DNA damage at this stage of germination, are consistent with the hypothesis that prolonged exposure to kinetin induces stress conditions leading to genotoxic injury.publishersversionpublishe

    Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division

    Get PDF
    Rac1 regulates a wide variety of cellular processes. The polybasic region of the Rac1 C terminus functions both as a plasma membrane–targeting motif and a nuclear localization sequence (NLS). We show that a triproline N-terminal to the polybasic region contributes to the NLS, which is cryptic in the sense that it is strongly inhibited by geranylgeranylation of the adjacent cysteine. Subcellular fractionation demonstrated endogenous Rac1 in the nucleus and Triton X-114 partition revealed that this pool is prenylated. Cell cycle–blocking agents, synchronization of cells stably expressing low levels of GFP-Rac1, and time-lapse microscopy of asynchronous cells revealed Rac1 accumulation in the nucleus in late G2 and exclusion in early G1. Although constitutively active Rac1 restricted to the cytoplasm inhibited cell division, activated Rac1 expressed constitutively in the nucleus increased the mitotic rate. These results show that Rac1 cycles in and out of the nucleus during the cell cycle and thereby plays a role in promoting cell division

    Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of rigid pyrazolones

    Get PDF
    Two series of novel rigid pyrazolone derivatives were synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. Two of these compounds showed a high activity against MTB (MIC = 4 ÎŒg/mL). The newly synthesized pyrazolones were also computationally investigated to analyze if their properties fit the pharmacophoric model for antitubercular compounds previously built by us. The results are in agreement with those reported by us previously for a class of pyrazole analogues and confirm the fundamental role of the p-chlorophenyl moiety at C4 in the antimycobacterial activity

    Studies on the acylation of 4-(2-aminoethylthio)-7-nitrobenzofurazan: the role of bases in promoting the formation of fluorescent S-acyl derivatives through S–N Smiles rearrangement

    Get PDF
    The acylation of 4-(2-aminoethylthio)-7-nitrobenzofurazan has been investigated. Depending on the use of the base, a competitive Smiles rearrangement occurs during the acylation step leading to the formation of N-acyl and/or fluorescent S-acyl derivatives. The acylating agent also affects the ratio of N/S acylated isomers
    • 

    corecore