7 research outputs found

    Nephrolithiasis, kidney failure and bone disorders in Dent disease patients with and without CLCN5 mutations

    Get PDF
    open9noDent disease (DD) is a rare X-linked recessive renal tubulopathy characterised by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis and/or nephrolithiasis. DD is caused by mutations in both the CLCN5 and OCRL genes. CLCN5 encodes the electrogenic chloride/proton exchanger ClC-5 which is involved in the tubular reabsorption of albumin and LMW proteins, OCRL encodes the inositol polyphosphate 5-phosphatase, and was initially associated with Lowe syndrome. In approximately 25 % of patients, no CLCN5 and OCRL mutations were detected. The aim of our study was to evaluate whether calcium phosphate metabolism disorders and their clinical complications are differently distributed among DD patients with and without CLCN5 mutations. Sixty-four male subjects were studied and classified into three groups: Group I (with CLCN5 mutations), Group II (without CLCN5 mutations) and Group III (family members with the same CLCN5 mutation). LMWP, hypercalciuria and phosphaturic tubulopathy and the consequent clinical complications nephrocalcinosis, nephrolithiasis, bone disorders, and chronic kidney disease (CKD) were considered present or absent in each patient. We found that the distribution of nephrolithiasis, bone disorders and CKD differs among patients with and without CLCN5 mutations. Only in patients harbouring CLCN5 mutations was age-independent nephrolithiasis associated with hypercalciuria, suggesting that nephrolithiasis is linked to altered proximal tubular function caused by a loss of ClC-5 function, in agreement with ClC-5 KO animal models. Similarly, only in patients harbouring CLCN5 mutations was age-independent kidney failure associated with nephrocalcinosis, suggesting that kidney failure is the consequence of a ClC-5 dysfunction, as in ClC-5 KO animal models. Bone disorders are a relevant feature of DD phenotype, as patients were mainly young males and this complication occurred independently of age. The triad of symptoms, LMWP, hypercalciuria, and nephrocalcinosis, was present in almost all patients with CLCN5 mutations but not in those without CLCN5 mutations. This lack of homogeneity of clinical manifestations suggests that the difference in phenotypes between the two groups might reflect different pathophysiological mechanisms, probably depending on the diverse genes involved. Overall, our results might suggest that in patients without CLCN5 mutations several genes instead of the prospected third DD underpin patients' phenotypes.openAnglani, Franca; D’Angelo, Angela; Bertizzolo, Luisa Maria; Tosetto, Enrica; Ceol, Monica; Cremasco, Daniela; Bonfante, Luciana; Addis, Maria Antonietta; Del Prete, DorellaAnglani, Franca; D'Angelo, Angela; Bertizzolo, Luisa Maria; Tosetto, Enrica; Ceol, Monica; Cremasco, Daniela; Bonfante, Luciana; Addis, Maria Antonietta; DEL PRETE, Dorell

    Effectiveness of a diet with low advanced glycation end products, in improving glycoxidation and lipid peroxidation: a long-term investigation in patients with chronic renal failure

    No full text
    Advanced glycation end products (AGEs) have a crucial role in the process of atherosclerosis, particularly in patients with chronic renal failure (CRF), which have a dual form of damage, namely an increased formation of serum AGEs and their reduced clearance [1, 2]. We previously observed that AGEs can react with the peritoneal matrix protein, giving a reason for the gradual loss of peritoneal membrane function observed in patients undergoing long-term peritoneal dialysis [3, 4]

    Prospects for combining targeted and conventional cancer therapy with immunotherapy

    No full text
    Over the past 25 years, research in cancer therapeutics has largely focused on two distinct lines of enquiry. In one approach, efforts to understand the underlying cell-autonomous, genetic drivers of tumorigenesis have led to the development of clinically important targeted agents that result in profound, but often not durable, tumour responses in genetically defined patient populations. In the second parallel approach, exploration of the mechanisms of protective tumour immunity has provided several therapeutic strategies-most notably the 'immune checkpoint' antibodies that reverse the negative regulators of T cell function-that accomplish durable clinical responses in subsets of patients with various tumour types. The integration of these potentially complementary research fields provides new opportunities to improve cancer treatments. Targeted and immune-based therapies have already transformed the standard-of-care for several malignancies. However, additional insights into the effects of targeted therapies, along with conventional chemotherapy and radiation therapy, on the induction of antitumour immunity will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in patients

    Urine proteome analysis in Dent's disease shows high selective changes potentially involved in chronic renal damage

    No full text
    Definition of the urinary protein composition would represent a potential tool for diagnosis in many clinical conditions. The use of new proteomic technologies allows detection of genetic and post-trasductional variants that increase sensitivity of the approach but complicates comparison within a heterogeneous patient population. Overall, this limits research of urinary biomarkers. Studying monogenic diseases are useful models to address this issue since genetic variability is reduced among first- and second-degree relatives of the same family. We applied this concept to Dent's disease, a monogenic condition characterised by low-molecular-weight proteinuria that is inherited following an X-linked trait. Results are presented here on a combined proteomic approach (LC-mass spectrometry, Western blot and zymograms for proteases and inhibitors) to characterise urine proteins in a large family (18 members, 6 hemizygous patients, 6 carrier females, and 6 normals) with Dent's diseases due to the 1070G>T mutation of the CLCN5. Gene ontology analysis on more than 1000 proteins showed that several clusters of proteins characterised urine of affected patients compared to carrier females and normal subjects: proteins involved in extracellular matrix remodelling were the major group. Specific analysis on metalloproteases and their inhibitors underscored unexpected mechanisms potentially involved in renal fibrosis. BIOLOGICAL SIGNIFICANCE:Studying with new-generation techniques for proteomic analysis of the members of a large family with Dent's disease sharing the same molecular defect allowed highly repetitive results that justify conclusions. Identification in urine of proteins actively involved in interstitial matrix remodelling poses the question of active anti-fibrotic drugs in Dent's patients

    ImmGen at 15

    No full text
    International audienc
    corecore