2,448 research outputs found
Deterministic reaction models with power-law forces
We study a one-dimensional particles system, in the overdamped limit, where
nearest particles attract with a force inversely proportional to a power of
their distance and coalesce upon encounter. The detailed shape of the
distribution function for the gap between neighbouring particles serves to
discriminate between different laws of attraction. We develop an exact
Fokker-Planck approach for the infinite hierarchy of distribution functions for
multiple adjacent gaps and solve it exactly, at the mean-field level, where
correlations are ignored. The crucial role of correlations and their effect on
the gap distribution function is explored both numerically and analytically.
Finally, we analyse a random input of particles, which results in a stationary
state where the effect of correlations is largely diminished
Optimal feeding and swimming gaits of biflagellated organisms
Locomotion is widely observed in life at micrometric scales and is exhibited by many eukaryotic unicellular organisms. Motility of such organisms can be achieved through periodic deformations of a tail-like projection called the eukaryotic flagellum. Although the mechanism allowing the flagellum to deform is largely understood, questions related to the functional significance of the observed beating patterns remain unresolved. Here, we focus our attention on the stroke patterns of biflagellated phytoplanktons resembling the green alga Chlamydomonas. Such organisms have been widely observed to beat their flagella in two different ways - a breast-stroke and an undulatory stroke-both of which are prototypical of general beating patterns observed in eukaryotes. We develop a general optimization procedure to determine the existence of optimal swimming gaits and investigate their functional significance with respect to locomotion and nutrient uptake. Both the undulatory and the breaststroke represent local optima for efficient swimming. With respect to the generation of feeding currents, we found the breaststroke to be optimal and to enhance nutrient uptake significantly, particularly when the organism is immersed in a gradient of nutrients. Keywords: optimization; stroke kinematics; low Reynolds number; efficiencyNational Science Foundation (U.S.) (Grant CCF-0323672)National Science Foundation (U.S.) (Grant CTS-0624830
Discriminating different classes of biological networks by analyzing the graphs spectra distribution
The brain's structural and functional systems, protein-protein interaction,
and gene networks are examples of biological systems that share some features
of complex networks, such as highly connected nodes, modularity, and
small-world topology. Recent studies indicate that some pathologies present
topological network alterations relative to norms seen in the general
population. Therefore, methods to discriminate the processes that generate the
different classes of networks (e.g., normal and disease) might be crucial for
the diagnosis, prognosis, and treatment of the disease. It is known that
several topological properties of a network (graph) can be described by the
distribution of the spectrum of its adjacency matrix. Moreover, large networks
generated by the same random process have the same spectrum distribution,
allowing us to use it as a "fingerprint". Based on this relationship, we
introduce and propose the entropy of a graph spectrum to measure the
"uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon
divergences between graph spectra to compare networks. We also introduce
general methods for model selection and network model parameter estimation, as
well as a statistical procedure to test the nullity of divergence between two
classes of complex networks. Finally, we demonstrate the usefulness of the
proposed methods by applying them on (1) protein-protein interaction networks
of different species and (2) on networks derived from children diagnosed with
Attention Deficit Hyperactivity Disorder (ADHD) and typically developing
children. We conclude that scale-free networks best describe all the
protein-protein interactions. Also, we show that our proposed measures
succeeded in the identification of topological changes in the network while
other commonly used measures (number of edges, clustering coefficient, average
path length) failed
Mir-34a Mimics Are Potential Therapeutic Agents for p53-Mutated and Chemo-Resistant Brain Tumour Cells
Chemotherapeutic drug resistance and relapse remains a major challenge for paediatric (medulloblastoma) and adult (glioblastoma) brain tumour treatment. Medulloblastoma tumours and cell lines with mutations in the p53 signalling pathway have been shown to be specifically insensitive to DNA damaging agents. The aim of this study was to investigate the potential of triggering cell death in p53 mutated medulloblastoma cells by a direct activation of pro-death signalling downstream of p53 activation. Since non-coding microRNAs (miRNAs) have the ability to fine tune the expression of a variety of target genes, orchestrating multiple downstream effects, we hypothesised that triggering the expression of a p53 target miRNA could induce cell death in chemo-resistant cells. Treatment with etoposide, increased miR-34a levels in a p53-dependent fashion and the level of miR-34a transcription was correlated with the cell sensitivity to etoposide. miR-34a activity was validated by measuring the expression levels of one of its well described target: the NADH dependent sirtuin1 (SIRT1). Whilst drugs directly targeting SIRT1, were potent to trigger cell death at high concentrations only, introduction of synthetic miR-34a mimics was able to induce cell death in p53 mutated medulloblastoma and glioblastoma cell lines. Our results show that the need of a functional p53 signaling pathway can be bypassed by direct activation of miR-34a in brain tumour cells
Global standards of Constitutional law : epistemology and methodology
Just as it led the philosophy of science to gravitate around scientific practice, the abandonment of all foundationalist aspirations has already begun making political philosophy into an attentive observer of the new ways in which constitutional law is practiced. Yet paradoxically, lawyers and legal scholars are not those who understand this the most clearly. Beyond analyzing the jurisprudence that has emerged from the expansion of constitutional justice, and taking into account the development of international and regional law, the ongoing globalization of constitutional law requires comparing the constitutional laws of individual nations. Following Waldron, the product of this new legal science can be considered as ius gentium. This legal science is not as well established as one might like to think. But it can be developed on the grounds of the practice that consists in ascertaining standards. As abstract types of best “practices” (and especially norms) of constitutional law from around the world, these are only a source of law in a substantive, not a formal, sense. They thus belong to what I should like to call a “second order legal positivity.” In this article I will undertake, both at a methodological and an epistemological level, the development of a model for ascertaining global standards of constitutional law
Scale-Invariance and the Strong Coupling Problem
The effective theory of adiabatic fluctuations around arbitrary
Friedmann-Robertson-Walker backgrounds - both expanding and contracting -
allows for more than one way to obtain scale-invariant two-point correlations.
However, as we show in this paper, it is challenging to produce scale-invariant
fluctuations that are weakly coupled over the range of wavelengths accessible
to cosmological observations. In particular, requiring the background to be a
dynamical attractor, the curvature fluctuations are scale-invariant and weakly
coupled for at least 10 e-folds only if the background is close to de Sitter
space. In this case, the time-translation invariance of the background
guarantees time-independent n-point functions. For non-attractor solutions, any
predictions depend on assumptions about the evolution of the background even
when the perturbations are outside of the horizon. For the simplest such
scenario we identify the regions of the parameter space that avoid both
classical and quantum mechanical strong coupling problems. Finally, we present
extensions of our results to backgrounds in which higher-derivative terms play
a significant role.Comment: 17 pages + appendices, 3 figures; v2: typos fixe
A Field Range Bound for General Single-Field Inflation
We explore the consequences of a detection of primordial tensor fluctuations
for general single-field models of inflation. Using the effective theory of
inflation, we propose a generalization of the Lyth bound. Our bound applies to
all single-field models with two-derivative kinetic terms for the scalar
fluctuations and is always stronger than the corresponding bound for slow-roll
models. This shows that non-trivial dynamics can't evade the Lyth bound. We
also present a weaker, but completely universal bound that holds whenever the
Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
Supersymmetric probes on the conifold
We study the supersymmetric embeddings of different D-brane probes in the
AdS_5 x T^{1,1} geometry. The main tool employed is kappa symmetry and the
cases studied include D3-, D5- and D7-branes. We find a family of three-cycles
of the T^{1,1} space over which a D3-brane can be wrapped supersymmetrically
and we determine the field content of the corresponding gauge theory duals.
Supersymmetric configurations of D5-branes wrapping a two-cycle and of
spacetime filling D7-branes are also found. The configurations in which the
entire T^{1,1} space is wrapped by a D5-brane (baryon vertex) and a D7-brane
are also studied. Some other embeddings which break supersymmetry but are
nevertheless stable are also determined.Comment: 44 pages, LaTeX; v2: typos corrected, references added, discussion of
D5-brane embeddings improve
Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect
We study several aspects of the kinetic approach to sterile neutrino
production via active-sterile mixing. We obtain the neutrino propagator in the
medium including self-energy corrections up to , from which
we extract the dispersion relations and damping rates of the propagating modes.
The dispersion relations are the usual ones in terms of the index of refraction
in the medium, and the damping rates are where
is the active neutrino scattering rate and
is the mixing angle in the medium. We provide a generalization of
the transition probability in the \emph{medium from expectation values in the
density matrix}: and
study the conditions for its quantum Zeno suppression directly in real time. We
find the general conditions for quantum Zeno suppression, which for sterile neutrinos with \emph{may
only be} fulfilled near an MSW resonance. We discuss the implications for
sterile neutrino production and argue that in the early Universe the wide
separation of relaxation scales far away from MSW resonances suggests the
breakdown of the current kinetic approach.Comment: version to appear in JHE
- …
