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Abstract

The brain’s structural and functional systems, protein-protein interaction, and gene networks are examples of biological
systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world
topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in
the general population. Therefore, methods to discriminate the processes that generate the different classes of networks
(e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several
topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix.
Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use
it as a ‘‘fingerprint’’. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the
‘‘uncertainty’’ of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to
compare networks. We also introduce general methods for model selection and network model parameter estimation, as
well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we
demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of
different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD)
and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions.
Also, we show that our proposed measures succeeded in the identification of topological changes in the network while
other commonly used measures (number of edges, clustering coefficient, average path length) failed.
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Introduction

In the last decades, attempts to understand the mechanisms that

determine the topology of complex real world networks using

random graphs (graphs that are generated by some random

process) has gained much attention [1]. Some examples of

complex networks are the World Wide Web [2], human social

networks [3], protein-protein interaction networks [4], metabolic

networks [5], and brain connectivity networks [6]. On studying

these complex networks, some questions naturally arise. For

example, how complex is a given random graph? How different

are two random graphs? Given a realization of a random graph,

how can one infer which random graph processes generated it?

Attempts to answer some of these questions have been made on

purely theoretical grounds [7], but interestingly, to the best of our

knowledge, no simple and robust procedure exists to answer these

questions using empirical data sets. Our aim in this work is to

introduce such procedures.

Interactions are essential to understand complex systems where,

to determine the behavior of the system, it is important to

understand the way each component of the system interacts with

others. For most classes of complex systems, interactions are

neither invariant in time nor across systems from the same class.

For example, neural networks in the cortex of the same individual

can change in time, and synaptic organization is different among

individuals. Therefore, a search for an exact common network

structure seems to be unfruitful. What seem to be invariant are

some statistical features that can be reproduced in classes of

random graphs; therefore, the corresponding ensemble of random

graphs can be used as a plausible model for an ensemble of cortical

networks.

Two random graph models that are widely used to model

natural phenomena are the scale-free [8] and the small-world

networks [9]. The main characteristics of these random graphs are

the non-trivial topological features that differ from the Erdös-

Rényi random graphs [10], i.e., complex networks present heavy

tail in the degree distribution, high clustering coefficient,

community, hierarchical structures, and short path lengths.

Usually, the scale-free network is characterized by its power-law

degree distribution while the small-world network presents short

path length and high clustering. However, although these

characteristics are essential features of these random graphs, they

are not sufficient to unambiguously identify a graph as belonging

to a particular class. For example, small-world networks are highly
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clustered like regular lattices and have small characteristic path

lengths like Erdös-Rényi random graphs.

In this work we propose that the random graph spectrum, i.e.,

the ensemble average of the eigenvalues of the adjacency matrix, is

a better and more general characterization of complex networks in

comparison with other commonly used measures: number of

edges, clustering coefficient, and average path length. For instance,

it is known that several topological properties of a random graph,

such as the number of walks, diameter, and cliques can be

described by the spectrum of its adjacency matrix [7]. Based on

this relationship between the topological properties of the random

graph and its spectrum, we introduce the definition of entropy of a

random graph spectrum and the Kullback-Leibler divergence

between two random graph spectra. By simulation experiments,

we observe that the entropy of random graph spectrum is related

to the intuitive idea of amount of uncertainty of a random graph

and that the Kullback-Leibler divergence between random graph

spectra can discriminate two random graphs that were generated

by different random process.

Statistical approaches such as model selection, parameter

estimation, and hypothesis testing to discriminate two classes of

random graphs are also presented. We illustrate practical use of

the model selection approach in protein-protein interaction

networks of eight different species. By analyzing the random

graph spectrum instead of the degree distribution, we classified all

the eight protein-protein interaction networks as scale-free graphs.

Finally, the power of Kullback-Leibler based statistical test is

illustrated by an application in networks derived from children

with Attention Deficit Hyperactivity Disorder and with typical

development. We succeeded in the identification of topological

changes between children with typical development and ADHD

patients, while standard measures such as number of edges,

clustering coefficient and average path length failed.

Definition of graphs and graph spectrum
A graph is a pair of sets G~(P,E), where P is a set of n nodes

and E is a set of m edges that connect two nodes (elements of P). A

random graph g is a family of graphs, where each member of the

family is generated by some probability law. Among several classes

of random graphs, there are three that have known importance

due to their capability to model real world events, namely, Erdös-

Rényi random (Figure 1A) [10], scale-free (Figure 1B) [8], and

small-world graphs (Figure 1C) [9].

Erdös-Rényi random graphs are the simplest ones in terms of

construction. Erdös and Rényi define a random graph as n labeled

nodes in which each pair of nodes (i,j) is connected by an edge

with a given probability p.

Scale-free networks, proposed by Barabási and Albert (1999),

have a power-law degree distribution due to node preferential

attachment. Barabási and Albert (1999) proposed the following

construction of a scale-free network: start with a small number of

(n0) nodes and at every time-step, add a new node with m1(ƒn0)
edges that link the new node to m1 different nodes already present

in the system. When choosing the nodes to which the new node

connects, assume that the probability that a new node will be

connected to node i is proportional to the degree of node i and the

scaling exponent ps which indicates the order of the proportion-

ality (ps~1 linear, ps~2 quadratic and son on).

Small-world graphs, proposed by Watts and Strogatz (1998) are

one-parameter models that interpolate between a regular lattice

and an Erdös-Rényi random graph [11]. First, a ring lattice with n
nodes is constructed, in which every node is connected to its first K
neighbors (K=2 on either side). Then, we choose a vertex and the

edge that connects it to its nearest neighbor in a clockwise sense.

With probability ps we reconnect this edge to a vertex chosen

uniformly at random over the entire ring. This process is repeated

by moving clockwise around the ring, considering each vertex in

turn until one lap is completed. Next, the edges that connect

vertices to their second-nearest neighbors clockwise are consid-

ered. As in the previous step, each edge is randomly rewired with

probability ps; we continue this process, circulating around the

ring and proceeding outward to more distant neighbors after each

lap, until each edge in the original lattice has been considered once

[9].

Any undirected graph G with n nodes can be represented by its

adjacency matrix A(G) with n|n elements Aij , whose value is

Aij~Aji~1 if nodes i and j are connected, and 0 otherwise. The

spectrum of graph G is the set of eigenvalues of its adjacency matrix

A(G). A graph with n nodes has n real eigenvalues

l1§l2§ . . . §ln. Now, given a random graph g, the eigenvalues

are random vectors for which we can take the expectation with

respect to the probability law of the random graph. We define the

spectral density distribution of a random graph g as

rg(l)~ lim
n??

S
1

n

Xn

j~1

d(l{lj=
ffiffiffi
n
p

)T, ð1Þ

where d is the Dirac delta function and the brackets ‘‘ST’’ indicate

the expectation with respect to the probability law of the random

graph. In what follows, we use the shorthand name spectrum of g

to indicate rg. The interest in spectral properties is related to the

fact that the spectral density can be directly related to the graph’s

topological features [12].

In application, a closed form for the spectral density is rarely

available, so we have to rely on some statistical estimators r̂rg. In

order to estimate the spectral densities, first the eigenvalues are

computed, and then Gaussian kernel regression using the

Nadaraya-Watson estimator [13] is applied for the regularization

of the estimator. Finally, the density is normalized to obtain the

integral below the curve equal to one. The bandwidth of the kernel

can be chosen by (max(eigenvalues) - min(eigenvalues))/number of

bins [14], where the number of bins can be selected by using any

objective criterion. In this work, we used the Sturges’ criterion

[15].

It is worth mentioning that the study of spectral density

distribution of complex networks is still an active area of research

[7,16], but the aim has been in general to obtain the exact or

approximate properties of spectrum distribution for a given model.

In this article, we are instead concerned with their statistical

properties and applications to crucial biological systems.

Results

First we will present the definitions of entropy and divergence

for graphs spectra, along with statistical methods for estimation

and significance testing. Then, the performance of each method is

evaluated by simulations and finally applied to actual data for

illustration.

Entropy of graph spectrum
Let rg be the spectrum of a random graph g. We define the

spectral entropy H(rg) as

H(rg)~{

ðz?

{?
rg(l) log rg(l)dl, ð2Þ

Discriminating Networks by Graphs Spectra
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Figure 1. Illustrative figure of the three different complex network models. (A) Erdös-Rényi; (B) Scale-free; and (C) Small-world and their
respective spectra, degree distributions, and entropies, in this order from top to bottom. The estimated entropies are computed for the respective
graph type for the respective parameters (probability p for the Erdös-Rényi, scaling exponent ps for the scale-free, and probability pr for the small-
world random graphs). In (A) the entropy values estimated from the simulation data is depicted by a solid line and the theoretical value of the
entropy computed using equation 4 is indicated by a dashed line.
doi:10.1371/journal.pone.0049949.g001
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where, as usual, we assume 0 log 0~0. Observe that the entropy

defined above is also known as differential entropy [17] and can

assume negative values, in contrast to the entropy defined for

discrete distributions.

Since the spectral density of an adjacency matrix of a random

graph has a tight relationship with the random graph structure and

can be considered a fingerprint of the random graph [7], we

propose that the corresponding spectral entropy also describes

important characteristics of the random graph. More specifically,

we propose that the spectral entropy measures a form of

‘‘uncertainty’’ associated to the random graph. To gain some

intuition, we can compute the approximate spectral entropy for

the Erdös-Rényi random graph g with parameter p as follows. For

large n, we have

rg(l)*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p(1{p){l2

q
2pp(1{p)

ð3Þ

for 0vDlDv2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(p(1{p))

p
and 0 otherwise [18,19]. Using the

above approximation, we have that

H(rg)*
1

2
ln(4p2p(1{p)){

1

2
: ð4Þ

This formula shows that the maximum spectral entropy for the

Erdös-Rényi graph is achieved for p~0:5, which is in accordance

to the intuition that this is the model with the largest uncertainty.

To confirm our point, the Erdös-Rényi random graph spectral

entropy was calculated for many different values of probability p
(bottom panel Figure 1A, dashed line). For the Erdös-Rényi

graphs, not surprisingly, the entropy achieved its maximum value

on p~0:5, and the minimum values on p~0 and p~1, which is

the situation where there is only one possible graph, i.e., the empty

and complete graphs, respectively (Figure 1A). Furthermore, it is

important to point out that the entropy function is symmetric due

to the symmetry of the spectrum function, i.e., the spectral density

of the Erdös-Rényi graph generated with parameter p is equal to

the spectral density of the Erdös-Rényi graph generated with

parameter 1{p.

For the scale-free and small-world networks, an exact formula

for the spectral entropy is not known, therefore, we estimated the

entropy for different parameters of the models. A straightforward

way to obtain an estimator ĤH(rg) for the spectral entropy is to first

obtain an estimator r̂r(l) of r(l) and plug in to the equation (2).

This is the procedure adopted in this work. To verify the accuracy

of our estimator we compared the average estimated entropy

values for 100 Erdös-Rényi random graphs with 500 nodes

(bottom panel Figure 1A, solid line) and the theoretical value in

equation 4 (bottom panel Figure 1A, dashed line). A visual

inspection shows that the estimator is very accurate. The average

bias for this example was {0:015, i.e., a small negative bias.

For the scale-free graphs we observe (Figure 1B) that the

estimated entropy is higher in low scaling exponents (ps) because it

becomes similar to an Erdös-Rényi random graph, whereas when

the scaling exponent goes to infinity it becomes closer to a

complete bipartite graph resulting in a lower entropy. Finally, for

small-world graphs (Figure 1C), the entropy is higher when the

randomness of the graph (probability pr) increases. Notice that

when pr~1, the small-world graph becomes an Erdös-Rényi

graph, whereas when pr~0 the graph is a ring [9], therefore

presenting lower entropy. For both scale-free and small-world

graphs, the number of nodes and edges were set to 500 and 600,

respectively, and for each scaling exponent (ps) or probability (pr),

an average entropy of 100 graphs were calculated.

Kullback-Leibler divergence between graphs
Once the spectral entropy is defined, one may introduce a

measure of similarity between two spectral densities, which is also

a measure of similarity between two random graphs. It is clear that

if two spectral densities are different, then the respective graphs

should be different, although the converse is not always true (i.e.,

there are non-isomorphic graphs which are isospectral).

We define the Kullback-Leibler divergence (for sake of brevity we call

it KL divergence) between two spectral densities rg1
and rg2

as

KL(rg1
Drg2

)~

ðz?

{?
rg1

(l) log
rg1

(l)

rg2
(l)

dl, ð5Þ

if the support of rg2
contains the support of rg1

. Otherwise,

KL(rg1
Drg2

)~z?. As usual, we assume 0 log
0

0
~0.

For the above equation, rg2
is called the reference measure. This

divergence is asymmetric and non-negative. It is also zero if and

only if rg1
and rg2

are equal.

The KL divergence can be interpreted as a measure of

discrepancy between two random graphs, and thus can be used

to build an estimator for the parameter of a model given an

observation. Specifically, let g be a random graph with spectral

density rg. Also let frhg be a parametric family of spectral

distributions indexed by a real vector h. Assume that there exists a

value of the parameter h, which we denote h�, that minimizes

KL(rg Drh). An estimator ĥh of h� is given by

ĥh~arg min
h

KL(r̂rg Drh): ð6Þ

The idea is that among all possible choices of models in a

parametric class of random graphs rh, we choose the one for

which the corresponding spectral density minimizes the divergence

with the non-parametrically estimated spectral density. This is in

the same spirit as nonparametric likelihood estimators of which the

Whittle estimator is an example [20].

To show the performance of our estimator, different complex

network models (Erdös-Rényi, scale-free, and small-world) with

sizes equal to 50, 100, 200, and 300 nodes were simulated. The

parameters to be estimated for each random graph model are: the

probability p of connecting two nodes for Erdös-Rényi graphs, the

scaling exponent of the preferential attachment ps for scale-free

graphs, and the rewiring probability pr for small-world graphs.

The estimated parameters were averaged values calculated for 50

repetitions, and the results are shown in Table 1. Brackets indicate

one standard deviation. From the results in Table 1, we conclude

that the estimator is reasonable and it can recover the correct

parameter with relatively small bias and variance, i.e., one or two

order of magnitudes smaller than the value of the estimated

parameter. We observe from Table 1 and further simulations not

shown here that the direction of the bias depend on the specific

parameter of the model and size of the graph, and therefore no

systematic bias direction seems to exist. The performance of the

estimator is further discussed in Section.

Another use of the KL is to build a model selection criterion to

select good models among a set of candidate random graphs. More

specifically, given a graph, it is important to decide if the graph

was more likely to have been generated by an Erdös-Rényi, scale-

Discriminating Networks by Graphs Spectra
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free, or small-world network. The KL divergence between the

given graph spectrum and the spectrum of different classes of

graphs can be interpreted as the quality of fitting the graph to the

model.

Given a graph g and its spectrum rg, several candidate graph

models may be ranked according to their KL divergence values

and the models with smaller KL divergence values should be

considered as good candidates to explain the data. Thus, KL

divergence provides an objective comparison among models, i.e., a

tool for model selection. Specifically, let r̂rg be the empirical

spectral distribution and frh1
g, . . . ,frhm

g be m different paramet-

ric families of spectral distributions. Let ĥhi for i~1, . . . ,m be the

estimators given in equation 6. We denote by #(hi) the dimension

of hi. The best candidate model ĥhj is chosen by

j~arg min
i

2KL(r̂rDrĥhi
)z2#(ĥhi) ð7Þ

The motivation for this criterion is the AIC (Akaike Information

Criterion) [21] model selection criterion. Informally, the model

that minimizes equation 7 is the one that has the most similar

spectral distribution when compared to the spectral distribution of

the data. The penalization term 2#(ĥhi) is added to avoid

overfitting. The three random graph models analyzed here have

the same number of parameters; therefore, the penalization term is

not strictly required here, but may be necessary in more general

settings.

Simulations were carried out in order to verify the accuracy of

the proposed model selection approach. Ten thousand graphs of

each class were generated and classified as Erdös-Rényi, scale-free,

or small-world by the model selection approach. The graph size

varied from 10 to 120 nodes. Figure 2 illustrates the performance

of the model selection method. For all graph class (Erdös-Rényi

(Figure 2A), scale-free (Figure 2B) or small-world (Figure 2C)),

when the number of nodes increases, the correct proportion of hits

also increases, demonstrating that the method is consistent and

improves with the graph size.

Usually, in real applications, complex networks are composed of

hundreds to thousands of nodes. In Figure 2, we observe that the

accuracy is high even for graphs smaller than 100 nodes. Indeed,

this implies that the proposed model selection method should be

useful for applications in data set with realistic data size.

Interestingly, the performance to identify small-world graphs is

very high, close to 100% even when the graph is very small (10

nodes). This is probably due to the specific algorithm used to

construct such a graph. Remember that the construction of a

small-world graph based on Watts-Strogatz algorithm starts with a

deterministic step, i.e., a ring lattice with n nodes which every node

is connected to its first K neighbors (K=2 on either side). It is likely

that this first step results in a more deterministic spectrum, in

comparison to Erdös-Rényi or scale-free graphs that are totally

non-deterministic.

Jensen-Shannon divergence
Given two random graphs g1 and g2, now we would like to

define a notion of distance between them based on entropy. In

other words, we are interested in identifying graphs that are

generated by the same random process instead of isomorphism in

graphs (an isomorphism of graphs g1 and g2 is a bijection f from

the vertex sets of g1 to the vertex sets of g2 such that any two

vertices u and v of g1 are adjacent if and only if f (u) and f (v) are

adjacent in g2)

The KL divergence is suited for the purpose of parameter

estimation and model selection as explained in previous section.

Nevertheless, it is not symmetric, i.e., in general

KL(r1Dr2)=KL(r2Dr1). For this reason, KL divergence is not

suited when it is not clear which distribution is the reference

distribution. This is indeed the case for statistical test comparing

two graphs spectra r1 and r2. We would like to avoid

inconsistency in the results when considering KL(r1Dr2) or

KL(r2Dr1).

Therefore, we introduce the Jensen-Shannon divergence (JS)

between two spectral densities rg1
and rg2

defined as

JS(rg1
,rg2

)~
1

2
KL(rg1

DrM )z
1

2
KL(rg2

DrM ) ð8Þ

where rM~
1

2
(rg1

zrg2
).

This divergence is symmetric and non-negative. It is also zero if

and only if rg1
and rg2

are equal. Moreover, the square root of the

JS divergence satisfies the triangle inequality.

It is natural to ask if the JS divergence between two distributions

is zero or not. Therefore, we set the statistical test for JS divergence

between two sets of graphs spectra rg1
and rg2

as

(H0 : JS(rg1
,rg2

)~0 versus H1 : JS(rg1
,rg2

)w0). Details of the

respective bootstrap-based test are provided in the Materials and

Methods section.

When a statistical test is proposed, at least two properties must

be shown: the power of the test under the alternative hypothesis

Table 1. Average parameters estimated by minimum distance estimator based on KL divergence for Erdös-Rényi random, scale-
free, and small-world graphs.

Random (p) Scale-free (ps) Small-world (pr)

Number of nodes/true parameters 0.50 1.50 0.30

50 0.51 (0.04) 1.53 (0.06) 0.33 (0.05)

100 0.50 (0.03) 1.53 (0.05) 0.33 (0.03)

200 0.50 (0.03) 1.56 (0.03) 0.34 (0.03)

300 0.50 (0.03) 1.55 (0.05) 0.34 (0.03)

500 0.50 (0.02) 1.54 (0.04) 0.33 (0.03)

One standard deviation is indicated between brackets. Calculations were carried out for 50 repetitions. The parameters to be estimated for each
graph model are: the probability p of connecting two nodes for Erdös-Rényi graphs, the power of the preferential attachment ps for scale-free
graphs, and the rewiring probability pr for small-world graphs.
doi:10.1371/journal.pone.0049949.t001
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(H1) and the control of the rate of false positives under the null

hypothesis (H0).

In order to check the power of the statistical test, i.e., if the

method based on the spectral distribution actually discriminates

between two sets of graphs characterized by slightly different

parameters (details in the Materials and Methods section), receiver

operating characteristic (ROC) curves were constructed and

compared to the test based on the degree distribution. The

ROC curve is useful in evaluating the power of the test and it

consists in a bidimensional plot of sensitivity (y-axis) versus 1 -

specificity (x-axis), where sensitivity = number of true positives/

(number of true positives+number of false negatives) and

specificity = number of true negatives/(number of true negati-

ves+number of false positives). The area below the ROC curve is a

quantitative summary of the power of the test. In other words, an

area closer to one (a curve above the diagonal line) denotes high

power while an area close to 0.5 (a curve close to the diagonal line)

is equivalent to random decisions. The top panels in Figure 3

illustrate the ROC curves with 10,000 repetitions for each class

(Erdös-Rényi, scale-free, and small-world). The solid and dashed

lines represent the test based on the spectral and degree

distributions, respectively. Despite the small differences between

the two conditions (parameters p1~0:10 versus p2~0:11 for

Erdös-Rényi graphs; the scaling exponent ps1~1:0 versus

ps2~1:1 for scale-free networks; and pr1~0:30 versus pr2~0:31
for small-world graphs) and relatively small sizes (100 nodes), our

statistical test based on the spectra was able to identify the graphs

that were generated by different sets of parameters with high

accuracy as can be observed by the ROC curves clearly above the

diagonal line. On the other hand, the statistical test based on the

degree distribution had comparable power to the spectra-based

test only when the evaluated networks were Erdös-Rényi graphs.

When the degree-based test was applied to scale-free and small-

world graphs, the discriminative power was not much better than

by chance, i.e., the ROC curves were close to the diagonal. This

probably occurred because the degree distribution is closely

related to the number of edges while the spectrum is related to the

whole structure of the graph. Notice that the parameter p of the

Erdös-Rényi graph is associated to the number of edges, while the

parameters ps of the scale-free network and pr of the small-world

network are associated to the structure of the graph.

It is also necessary to verify if the bootstrap-based test is actually

controlling the rate of false positives under the null hypothesis, i.e.,

when both sets of graphs are generated by the same model and

same set of parameters. By simulating two random graphs g1 and

g2, each one generated by the same model and parameters (see

Materials and Methods section), and testing H0 : JS(rg1
,rg2

)~0

versus H1 : JS(rg1
,rg2

)w0, the p-value distribution should be a

uniform distribution. The uniform distribution of p-values

illustrates that the rate of false positives is actually controlled by

our bootstrap procedure under any p-value threshold. Notice that

for a p-value threshold set to 1%, it is expected to obtain 1% of

false positives, for a threshold of 5%, 5% are expected to be false

positive and so on and so forth. The bottom panels in Figure 3

show the p-value distributions (x-axis represents the p-values while

the y-axis is the frequency or density of the respective p-value in

10,000 repetitions under the null hypothesis), one for each class

(Erdös-Rényi, scale-free, and small-world), indicating that all of

them are very similar to uniform distributions on ½0,1� under the

null hypothesis. In other words, the bootstrap test is controlling the

rate of false positives, as expected.

Application to protein-protein interaction network
In order to illustrate the model selection application in actual

data, protein-protein interaction data were downloaded from the

DIP (Database of Interacting Proteins [22]) on June 29th, 2011.

The DIP database is composed of eight species namely, H. pylori

(bacterium), R. norvegicus (rat), M. musculus (mouse), E. coli

(bacterium), C. elegans (worm), S. cerevisiae (yeast), H. sapiens

(human), D. melanogaster (fruit fly). All of them present different

number of nodes, edges, average degree, diameter, clustering

coefficient and average path length as can be visualized in Table 2.

The adjacency matrices of graphs were constructed for each

species and the set of eigenvalues with the corresponding

multiplicities were calculated. The frequency plot for the

eigenvalues of the adjacency matrix for the eight species are

displayed in Figure 4.

We evaluate how successful our algorithm based on the graph

spectrum and KL divergence is by analyzing those protein-protein

interaction networks that have already been classified as scale-free

graphs by considering the degree distribution [23].

Remarkably, all the eight species were classified as scale-free

networks by our model selection approach based on the graph

Figure 2. Figure illustrating the performance of the model selection approach as a function of number of nodes. Given a graph
belonging to (A) Erdös-Rényi with parameter p~0:3, (B) scale-free with parameter ps~1, and (C) small-world with parameter pr = 0.3, the solid,
dashed, and dotted lines represent the proportion of graphs classified as Erdös-Rényi, scale-free, and small-world, respectively. Notice that the larger
is the graph, the higher is the proportion of correct hits, showing that the model selection approach is consistent. For each graph size (10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 110, 120 nodes), 1,000 repetitions were carried out.
doi:10.1371/journal.pone.0049949.g002
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spectrum analysis (instead of the degree distribution) (Table 3)

demonstrating that not only the degree distribution, but also the

spectrum contains information for classification.

Application to neuroscience data
Application of JS divergence measure (‘‘distance’’ between

graphs) and its respective statistical test is illustrated in fMRI data

of children diagnosed with Attention Deficit Hyperactivity

Disorder (ADHD) and children with typical development. ADHD

is a developmental disorder that affects at least 5–10% of children

and is associated with difficulty on staying focused, on paying

attention, difficulty controlling behavior, and hyperactivity [24].

Despite several efforts, there is no comprehensive model of this

pathophysiology and the treatment is usually focused on medica-

tion that reduces the symptoms and improves functioning [25]. In

order to provide new insights for this disease by using our

proposed methodology, pre-processed functional magnetic reso-

nance imaging (fMRI) data, from normal individuals and subjects

diagnosed with ADHD, was downloaded from The Neuro Bureau

as well as the ADHD-200 consortium [26]. The data is based on

monitoring the BOLD (blood oxygenation level dependent) at

different brain regions, which can be considered as an indirect

measure of local neuronal activity [28]. The data was acquired

under a resting state protocol, which is associated with the

observation of brain spontaneous activity [27].

Pairwise Spearman correlation was calculated among 351 mean

signals at different regions (using CC400 Atlas, only regions larger

than five voxels) and a threshold of p-value = 0.05 (after FDR

correction [29]) was set to determine the existence of an edge. The

correlation between these regions describes the functional

connectivity of spontaneous activity at these areas. In other words,

an adjacency matrix for each subject was constructed by

considering a p-valuev0.05 as 1 and 0 otherwise. Network

topological comparisons were carried out between the 478

children with typical development against 158 with combined

type of ADHD (hyperactive-impulsive and inattentive).

Differences in the topology between children with typical

development and with ADHD were estimated by our approach

based on graph spectral distribution and four robust and often

used measures, namely number of edges, clustering coefficient,

average path length, and degree distribution. The Wilcoxon test

was carried out in order to test differences in the number of edges,

clustering coefficient, and the average path length. For the degree

distribution, we applied the JS based test, similar to the one

applied to test differences in the spectra. Table 4 shows that no

statistical evidences to discriminate the two groups of children

were identified by the number of edges (p-value = 0.82), clustering

coefficient (p-value = 0.85), and average path length (p-val-

ue = 0.87). However, by analyzing the degree and spectral

distributions (Figure 5), significant statistical differences were

found (p-value = 0.031 for degree distribution and p-value = 0.024

for spectral distribution).

In order to check whether the differences in the spectral

distributions are not due to numerical fluctuation, the control of

the rate of false positives in biological data was verified. The set of

478 children with typical development was split randomly into two

subsets, and the JS divergence test in graphs spectra was applied

between these subsets. This procedure was repeated 10,000 times.

The proportion of falsely rejected hypothesis for p-values equal to

0.1, 1, 5, and 10% were 0.16, 1.04, 5.55, and 11.05%,

Figure 3. ROC curve under the alternative hypothesis and p-value distribution under the null hypothesis. (A) Erdös-Rényi graphs; (B)
scale-free graphs, and (C) small-world graphs. For the ROC curves, the x-axis represents the 1-specificity and the y-axis the sensitivity. Both ROC
curves and p-value distributions were constructed by analyzing 10,000 experiments. Solid and dashed lines represent the test based on the spectral
and degree distributions, respectively.
doi:10.1371/journal.pone.0049949.g003
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Figure 4. The frequency plots. The frequency plot for the eigenvalues of the eight species (H. pylori, R. norvegicus, M. musculus, E. coli, C. elegans, S.
cerevisiae, H. sapiens, D. melanogaster).
doi:10.1371/journal.pone.0049949.g004

Table 2. The general characteristics of eight protein-protein interaction networks. For each network we indicate the number of
nodes, the number of edges, the average degree, the diameter, the clustering coefficient and the average path length.

Species Number of nodes Number of edges Average degree Diameter Clustering coefficient Average path length

H. pylori 714 1,393 3.90 9 0.016 4.139

R. norvegicus 758 691 1.82 9 0.001 3.651

M. musculus 1,868 1,895 2.03 20 0.006 6.280

E. coli 2,997 12,348 8.24 12 0.115 3.986

C. elegans 3,183 5,068 3.18 13 0.012 4.803

S. cerevisiae 5,213 25,073 9.62 10 0.058 3.860

H. sapiens 5,940 14,144 4.76 17 0.017 4.755

D. melanogaster 7,931 23,386 5.90 12 0.012 4.468

doi:10.1371/journal.pone.0049949.t002
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respectively, confirming that the type I error is effectively

controlled in this biological data. Moreover, in order to verify

the site effect, the JS based test on the spectra was carried out

among laboratories. The tests were carried out under the null

hypothesis, i.e., in typical development children datasets of

different laboratories. Table 5 shows the p-values after Bonferroni

correction for multiple tests. Notice that since no null hypothesis

was rejected (significance level of 0.05), there are no statistical

evidences of site effect that may significantly affect our results.

These results suggest that the differences between children with

typical development and with ADHD graphs spectra are

statistically significant.

Discussion

The topology of the network represents the set of interactions

between the nodes of the network. The topology affects the

system’s dynamics and carries information about the functional

needs of the system, its evolution and the role of each individual

unit [30]. Therefore, network analyses comparing control cases

and disease cases is becoming a reference in the medical area [31].

Findings of significant differences when doing this comparison will

possibly lead to the improvement of diagnostic, prognostic, and

therapy.

Most of the network analyses are based on algorithms that

identify punctual changes (presence or absence of a certain edge)

in their node connectivity. However, in Systems Biology, different

subjects with the same disease may display topologically different

molecular networks or brain networks due to genetic variability

rather than disease variability. Therefore, a single graph will

probably not be representative of the network; instead, a class of

graphs generated by a random mechanism seems to be more

appropriate.

This situation requires statistical procedures to analyze graphs.

The difficulty is then to understand which parameter is

representative of the class of graphs. The spectral distribution of

a graph gives characteristics for ensemble of graphs generated by

the random graphs, and the entropy of a spectrum and Kullback-

Leibler divergence between spectra are natural information

theoretical quantities to be studied.

Parameter estimation
For some classes of graphs, the parameters of the model can be

easily estimated. For example, the parameter p of an Erdös-Rényi

graph can be estimated by counting the edges and dividing it by

the total number of possible edges of the graph (n2{n). However,

for more complex models such as the small-world graph proposed

by Watts and Strogatz, it is not trivial to estimate the probability pr

of edge permutation. Here, we demonstrated that the estimator

based on the KL minimum distance (equation 6) is a general and

straightforward method that can be successfully applied to

estimate parameters of diverse complex networks.

One may argue whether the application of KL minimum

distance estimator could not be applied to degree distribution

instead of the graph spectrum. Notice in Figure 3 that the degree

distribution showed a lower power to discriminate graphs

generated by different parameters than the spectra. Therefore,

the spectrum might be a better feature to be analyzed than the

degree in order to estimate the parameters.

Model selection
Jeong and others [23] were the first group to classify protein-

protein interaction networks as scale-free graphs by analyzing the

Table 3. The estimated Kullback-Leibler divergence between
the eight species and the three random graph models. In bold
are the lowest KL divergence values.

Species Erdös-Rényi Scale-free Small-world

H. pylori 15.07 1.46 11.36

R. norvegicus 134.67 100.47 118.67

M. musculus 14.10 6.93 24.51

E. coli 21.15 1.91 17.90

C. elegans 30.48 2.66 30.23

S. cerevisiae 24.21 0.87 18.25

H. sapiens 47.10 11.31 44.04

D. melanogaster 17.40 0.39 18.06

doi:10.1371/journal.pone.0049949.t003

Figure 5. (A) Spectral and (B) degree distributions in the log-scale. Solid line represents the children with typical development. Dashed line
represents children with combined type of ADHD (hyperactive-impulsive and inattentive).
doi:10.1371/journal.pone.0049949.g005
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degree distribution. Later, several other groups re-analyzed the

degree distribution of protein-protein interaction networks and

came to differing conclusions regarding whether it was appropriate

to refer to these graphs as scale-free [32,33]. One difficulty was the

lack of an objective statistical procedure to decide which random

graph model fits better the data set.

By applying our model selection approach it is possible to

choose objectively, from a choice of candidate graph models,

which model best fits the data. By our graph spectrum analysis, all

the eight protein-protein interaction networks were classified as

scale-free networks among Erdös-Rényi, scale-free, and small-

world models. We note that, in the simulation study, our model

selection approach has correctly classified 100% of the graphs with

120 nodes and the protein-protein interaction networks analyzed

here are larger than 700 nodes, which adds to the evidence that

among these three candidate networks, the scale-free network

seems to fit better.

Despite these results, it is important to notice that the model

selection approach is an objective criterion to select the model that

best fits the data among candidate models. Therefore, by analyzing the

graph spectrum instead of the degree distribution, this study only

provides one more piece of evidence that scale-free graphs fit

better to protein-protein interaction networks than ER and small-

world networks. If another complex network model is proposed,

one may use this approach to verify which one best fits the given

graph.

Another point to be analyzed is the fact that, since only part of

the protein-protein network is available, it is always possible that

the observed sample is not representative of the entire network,

consequently, resulting in a sampling artifact problem [34].

Unfortunately, this is a problem about the original data set that

should be addressed when the data is collected or by introduction

of a priori model of the network. The analysis proposed here is

conditioned to the quality of the data sets.

Materials and Methods

We present below the details of the computational experiments.

The statistical analyses were done using custom made programs in

R [35] (language and environment for statistical computing and

graphics). The R library igraph was used to generate the random

graphs.

Parameter estimation
The performance of the parameter estimator based on

minimization of the KL divergence was evaluated on different

complex network models namely Erdös-Rényi random graph,

scale-free, and small-world, with sizes varying from 50 to 300

nodes. The parameters to be estimated are the probability

p~0:50, the scaling exponent of the preferential attachment

ps~1:50 and the rewiring probability pr = 0.30 for Erdös-Rényi,

scale-free, and small-world networks, respectively. The spectral

densities (rg) of each graph were estimated by a Gaussian kernel

regression using the Nadaraya-Watson estimator. Since the

theoretical spectrum distribution (rh) is unknown for scale-free

and small-world networks, the spectrum distribution was estimated

by simulating 50 graphs and calculating the average spectra

distribution (r̂rh) as an approximation for the theoretical distribu-

tion (rh). A grid search was carried out in order to determine the

argument h that minimizes KL(r̂rg Dr̂rh).

Model selection
In order to evaluate the performance of the proposed model

selection approach, one random graph G is generated (among

Erdös-Rényi, scale-free, and small-world) with parameters p~0:3
for Erdös-Rényi graph, ps~1 for scale-free graphs and pr~0:3 for

small-world graphs, with sizes varying from 10 to 120 nodes.

Then, the spectrum of G is estimated. In order to search the

optimum set of parameters for each graph model (the set of

parameters that minimizes the KL divergence), a grid search was

carried out. Fifty graphs for each class (g1~Erdös-Rényi random;

g2~scale-free; and g3~small-world) are generated. The KL

divergence is estimated between the spectrum of G and the

average spectrum of the 50 graphs of each graph type (g1, g2, g3).

The graph model gi (i~1,2,3) which has the minimum KL

divergence value between G and the three models (g1, g2, g3) is the

one which best fits G. This experiment was repeated 1,000 times

for each graph type (Erdös-Rényi, scale-free, or small-world) and

each graph size (10 to 120 nodes).

Statistical test for JS divergence between graph spectra
Given two sets of graphs g1 and g2, the test consists of verifying

if the JS divergence between the average graph spectrum of set g1

Table 4. Different metrics to measure graph discrepancy between children with typical development and children with combined
type of ADHD (hyperactive-impulsive and inattentive) and their respective p-values.

Number of Clustering Average path Degree Spectrum

edges coefficient length Distribution

normal vs ADHD 0.82 0.85 0.87 0.031 0.024

For number of edges, clustering coefficient and average path length, the Wilcoxon test was carried out. For degree and spectral distributions, the JS divergence with the
bootstrap test was calculated.

Table 5. P-values obtained by testing the Jensen-Shannon
divergence in the spectra distributions among different
laboratories.

Labs. #2 #3 #4 #5 #6 #7

#1 0.9 1.0 0.2 1.0 1.0 1.0

#2 1.0 1.0 1.0 1.0 1.0

#3 1.0 1.0 1.0 1.0

#4 1.0 1.0 1.0

#5 1.0 1.0

#6 1.0

The tests were carried out under the null hypothesis, i.e., in typical
development children datasets of different laboratories. The laboratories were
numbered from one to seven and the p-values are after Bonferroni correction
for multiple tests.
doi:10.1371/journal.pone.0049949.t005
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and the average graph spectrum of g2 is zero or not. Formally, we

test H0 : JS(rg1
,rg2

)~0 versus H1 : JS(rg1
,rg2

)w0.

One alternative to perform the test is to use a bootstrap

procedure. The bootstrap was introduced in 1979 as a computer-

based method for estimating the standard error of the statistic or to

construct confidential intervals that could be used to provide a

significance level for a hypothesis test [36].

Let #g1 and #g2 be the quantity of graphs contained in sets g1

and g2, respectively. The bootstrap implementation of this test is as

follows:

1. Create a set of graphs spectra ~gg1 (the bootstrap sample) by

resampling with replacement, #g1 spectra distributions from

g1|g2.

2. Create a set of graphs spectra ~gg2 (the bootstrap sample) by

resampling with replacement, #g2 spectra distributions from

g1|g2.

3. Let r~ggi
1

is the i-th spectra distribution of ~gg1 and r~ggi
2

is the i-th
spectra distribution of ~gg2. Calculate the average spectra

distributions rg�
1
, i.e., rg�

1
(l)~

P#g1

i~1 r~ggi
1
(l)

#g1
, and rg�

2
, i.e.

rg�
2
(l)~

P#g2

i~1 r~ggi
2
(l)

#g2
, of ~gg1 and ~gg2, respectively.

4. Calculate ĴJS(rg�
1
Drg�

2
) (the bootstrap replication).

5. Repeat steps 1 to 5 until obtaining the desired number of

bootstrap replications.

6. Test if ĴJS(rg1
Drg2

)~0 using the empirical distribution obtained

in steps 1 to 5. Gather the information from the empirical

distribution of ĴJS(rg�
1
Drg�

2
) to obtain a p-value for

ĴJS(rg1
Drg2

)~0, by analyzing the probability of obtaining

values equal or greater than ĴJS(rg�
1
Drg�

2
).

The purpose of steps 1 and 2 is to construct new sets ~gg1 and ~gg2

that are under the null hypothesis. This is exactly done by

sampling graphs spectra distributions from g1|g2. In order to

verify whether the bootstrap based statistical test is actually

controlling the rate of false positives, p-value histograms under the

null hypothesis were constructed. For each class of graph (Erdös-

Rényi random, scale-free, and small-world), 100 graphs with 100

nodes with the same set of parameters (p~0:5 for Erdös-Rényi

graphs; ps~1 for scale-free graphs and pr~0:3 for small-world

graphs) were constructed. The 100 graphs of each class were split

into two sets of 50 graphs and the statistical test performed with

1,000 bootstrap resampling. These experiments were repeated

10,000 times in order to construct the p-value distributions.

We were concerned in evaluating the power of the proposed

test, therefore the parameters of the 50 graphs of one group and

the 50 graphs of the other were set with small differences. The

parameters are set as follows: p1~0:50 versus p2~0:52 for Erdös-

Rényi graphs; the scaling exponent ps1~1:0 versus ps2~1:1 for

scale-free networks and pr1~0:30 versus pr2~0:31 for small-world

graphs. The parameters p1 and p2 for Erdös-Rényi graphs

represent the probability of a pair of nodes be connected by an

edge. The parameters ps1 and ps2 represent the degree of

proportionality (scaling exponent) that a new node in the scale-

free graph will be connected to node i. For example, ps~1 means

that the new node attaches to node i linearly proportional to the

degree of node i. ps~2 means that the new node attaches to node

i quadratic proportional to the degree of node i and so on and so

forth. The parameters pr1 and pr2 represent the probability of

rewiring (permuting the edges) in the small-world graph. All other

parameters (number of nodes for Erdös-Rényi graphs and number

of nodes and edges for scale-free and small-world graphs) were

maintained equal between the two groups.

Conclusions and Future Applications

Our findings indicate that there are significant differences in the

graph spectra of brain networks between children with and

without ADHD. We anticipate that future studies in the field of

graph spectra may illuminate the topological significance of these

features, and consequently help in the investigation of the

relationship of these differences with brain function.

The proposed approaches are flexible enough to allow

generalizations to other arbitrarily sophisticated families of graphs.

Here, we limited the analysis to three well-known classes of

random graphs, but the analysis can be extended to other graphs

without restriction and it is applicable to many areas where

network data is a source of concern.
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10. Erdös P, Rényi A (1959) On random graphs. Publicationes Mathematicae

(Debrecen) 6: 290–297.

11. Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-
world network model. Physics Letters A 263: 341–346.

12. Albert R, Barabasi A-L (2002) Statistical mechanics of complex networks.

Reviews of Modern Physics 74: 47–97.

13. Nadaraya EA (1964) On estimating regression. Theory of probability and its

applications 10: 186–190.

14. Sain SR, Scott W (1996) On locally adaptative density estimation. Journal of the
American Statistical Association 91: 1925–1934.

15. Sturges HA (1926) The choice of a class interval. Journal of the American

Statistical Association 21: 65–66.

16. Dorogovtsev SN, Goltsev AV, Mendes JFF, Samukhin AN (2003) Spectra of

complex networks. Physical Review E E68: 046109.

17. Cover TM, Thomas JA (2006) Elements of information theory 2nd edition,
Willey-Interscience: NJ.

18. Wigner E (1955) Characteristic vectors of bordered matrices with in_nite

dimensions. Ann Math 62: 548–564.

Discriminating Networks by Graphs Spectra

PLOS ONE | www.plosone.org 11 December 2012 | Volume 7 | Issue 12 | e49949



19. Wigner E (1958) On the distribution of the roots of certain symmetric matrices.

Ann Math 67: 325–328.

20. Whittle P (1953) Estimation and information in stationary time series. Ark Math

2: 423–434Z.

21. Akaike H (1974) A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19: 716–723.

22. Database of Interacting Proteins. Available: http://dip.doe-mbi.ucla.edu/dip/.

Accessed 2011 June 29.

23. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabsi A-L (2000) The large-scale

organization of metabolic networks. Nature 407: 651–654.

24. American Psychiatric Association (1994) Diagnostic and Statistical Manual of

Mental Disorders (4th edition) American Psychiatric Association, Washington,

DC.

25. Singh I (2008) Beyond polemics: science and ethics of ADHD. Nature Reviews

Neuroscience 9: 957–964.

26. ADHD-200 Preprocessed Data. Available: http://neurobureau.projects.nitrc.

org/ADHD200/Introduction.html. Accessed 2011 August 20.

27. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al. (2005) The

human brain is intrinsically organized into dynamic, anticorrelated functional

networks. PNAS 102: 9673–8.

28. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001)

Neurophysiological investication of the basis of the fMRI signal. Nature 412:
150–157.

29. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a

practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society Series B 57: 289–300.
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