24 research outputs found
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
SynthÚse et recyclage de catalyseurs métallodendritiques par leur greffage sur des nanoparticules magnétiques
La rĂ©cupĂ©ration et le recyclage des catalyseurs reprĂ©sentent un vĂ©ritable challenge Ă©conomique, sanitaire et environnemental. Depuis quelques annĂ©es, lâutilisation des nanoparticules magnĂ©tiques comme support de catalyseurs a Ă©mergĂ© comme une voie alternative pour leur recyclage. En effet, les catalyseurs supportĂ©s sur des nanoparticules magnĂ©tiques peuvent ĂȘtre facilement isolĂ©s et recyclĂ©s par dĂ©cantation magnĂ©tique avec un simple aimant. Dans ce travail, nous dĂ©crivons la synthĂšse de mĂ©tallodendrons porteurs de site catalytiques diphosphinopalladium et leur greffage sur des nanoparticules magnĂ©tiques cĆur-Ă©corce. LâintĂ©rĂȘt majeur de ce travail a Ă©tĂ© de montrer la grande efficacitĂ© du recyclage des catalyseurs notamment en milieu aqueux. Lâutilisation judicieuse des structures dendritiques a permis dâaugmenter la fonctionnalisation de la surface des MNPs. Ceci nous a permis de prĂ©parer des catalyseurs supportĂ©s trĂšs performants dans des rĂ©actions de couplage de Suzuki et de SonogashiraThe recovery and recycling of catalysts represent a real challenge for economic, health and environmental reasons. Since few years, the use of magnetic nanoparticles as catalysts supports has emerged as an alternative for their recovery. Indeed, magnetic nanoparticles-supported catalysts could be easily isolated and recycled from the reaction medium by magnetization with a simple magnet. In this work, we report the synthesis of metallodendrons bearing pallado phosphine catalysts and their grafting onto core-shell magnetic nanoparticles. The main interest of this work was to demonstrate the efficiency of the recycling especially in aqueous media. Judicious use of dendritic structures has increased the surface functionalization of nanoparticles. Therefore, it was possible to prepare highly performant catalysts for Suzuki and Sonogashira cross-coupling reactions
SynthÚse et recyclage de catalyseurs métallodendritiques par leur greffage sur des nanoparticules magnétiques
La rĂ©cupĂ©ration et le recyclage des catalyseurs reprĂ©sentent un vĂ©ritable challenge Ă©conomique, sanitaire et environnemental. Depuis quelques annĂ©es, lâutilisation des nanoparticules magnĂ©tiques comme support de catalyseurs a Ă©mergĂ© comme une voie alternative pour leur recyclage. En effet, les catalyseurs supportĂ©s sur des nanoparticules magnĂ©tiques peuvent ĂȘtre facilement isolĂ©s et recyclĂ©s par dĂ©cantation magnĂ©tique avec un simple aimant. Dans ce travail, nous dĂ©crivons la synthĂšse de mĂ©tallodendrons porteurs de site catalytiques diphosphinopalladium et leur greffage sur des nanoparticules magnĂ©tiques cĆur-Ă©corce. LâintĂ©rĂȘt majeur de ce travail a Ă©tĂ© de montrer la grande efficacitĂ© du recyclage des catalyseurs notamment en milieu aqueux. Lâutilisation judicieuse des structures dendritiques a permis dâaugmenter la fonctionnalisation de la surface des MNPs. Ceci nous a permis de prĂ©parer des catalyseurs supportĂ©s trĂšs performants dans des rĂ©actions de couplage de Suzuki et de SonogashiraThe recovery and recycling of catalysts represent a real challenge for economic, health and environmental reasons. Since few years, the use of magnetic nanoparticles as catalysts supports has emerged as an alternative for their recovery. Indeed, magnetic nanoparticles-supported catalysts could be easily isolated and recycled from the reaction medium by magnetization with a simple magnet. In this work, we report the synthesis of metallodendrons bearing pallado phosphine catalysts and their grafting onto core-shell magnetic nanoparticles. The main interest of this work was to demonstrate the efficiency of the recycling especially in aqueous media. Judicious use of dendritic structures has increased the surface functionalization of nanoparticles. Therefore, it was possible to prepare highly performant catalysts for Suzuki and Sonogashira cross-coupling reactions
SynthÚse et recyclage de catalyseurs métallodendritiques par leur greffage sur des nanoparticules magnétiques
La rĂ©cupĂ©ration et le recyclage des catalyseurs reprĂ©sentent un vĂ©ritable challenge Ă©conomique, sanitaire et environnemental. Depuis quelques annĂ©es, l utilisation des nanoparticules magnĂ©tiques comme support de catalyseurs a Ă©mergĂ© comme une voie alternative pour leur recyclage. En effet, les catalyseurs supportĂ©s sur des nanoparticules magnĂ©tiques peuvent ĂȘtre facilement isolĂ©s et recyclĂ©s par dĂ©cantation magnĂ©tique avec un simple aimant. Dans ce travail, nous dĂ©crivons la synthĂšse de mĂ©tallodendrons porteurs de site catalytiques diphosphinopalladium et leur greffage sur des nanoparticules magnĂ©tiques cĆur-Ă©corce. L intĂ©rĂȘt majeur de ce travail a Ă©tĂ© de montrer la grande efficacitĂ© du recyclage des catalyseurs notamment en milieu aqueux. L utilisation judicieuse des structures dendritiques a permis d augmenter la fonctionnalisation de la surface des MNPs. Ceci nous a permis de prĂ©parer des catalyseurs supportĂ©s trĂšs performants dans des rĂ©actions de couplage de Suzuki et de SonogashiraThe recovery and recycling of catalysts represent a real challenge for economic, health and environmental reasons. Since few years, the use of magnetic nanoparticles as catalysts supports has emerged as an alternative for their recovery. Indeed, magnetic nanoparticles-supported catalysts could be easily isolated and recycled from the reaction medium by magnetization with a simple magnet. In this work, we report the synthesis of metallodendrons bearing pallado phosphine catalysts and their grafting onto core-shell magnetic nanoparticles. The main interest of this work was to demonstrate the efficiency of the recycling especially in aqueous media. Judicious use of dendritic structures has increased the surface functionalization of nanoparticles. Therefore, it was possible to prepare highly performant catalysts for Suzuki and Sonogashira cross-coupling reactions.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
Enhanced catalyst recovery in an aqueous copper-free Sonogashira cross-coupling reaction
We report the synthesis of a superparamagnetic nanoparticle MNP (c-Fe2O3/polymer) supported dendritic catalyst based on a bulky electron-rich phosphine Pd(II) complex. The high reactivity of this catalyst is described in a copper-free Sonogashira CâC cross-coupling reaction in water, and the significant role of surfactant additives is highlighted in the recovery study
Multistability at Room Temperature in a Bent-Shaped Spin-Crossover Complex Decorated with Long Alkyl Chains
An iron(II) pyridyl-benzohydrazonatebased complex decorated with long alkyl chains is reported as a rare spin-crossover compound displaying a wide thermal hysteresis spanning room temperature....
Dendron-Functionalized CoreâShell Superparamagnetic Nanoparticles: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C Cross-Coupling Reactions
A metallodendron functionalized with dicyclohexyldiphosphino palladium complex was synthesized. The metallodendron was grafted onto coreâshell superparamagnetic nanoparticles (g-Fe2O3/polymer, 200â500 nm) to give optimal catalytic reactivity in cross-coupling reactions. The grafted nanoparticles were used as recoverable and reusable catalysts for Suzuki C-C cross-coupling reactions. They showed remarkable reactivity towards iodoand bromoarenes under mild conditions, and unprecedented reactivity towards chloroarenes. On completion of the catalytic reaction, the catalysts were readily recovered by using a simple magnet to attract the superparamagnetic grafted nanoparticles. Catalysts were recovered more than 25 times with almost no discernable loss of reactivity
Efficient strategy to increase the surface functionalization of core-shell superparamagnetic nanoparticles using dendron grafting
Core-shell c-Fe2O3/polymer 300 nm superparamagnetic nanoparticles, grafted by fluorescent dendrons using a convergent approach, showed an increase in their surface functionalization compared to grafting using a linear analogue
Synthesis and molecular structures of mercury(II) complexes of carbamoylmethylphosphoryl ligands
<p>The reactions of carbamoylmethylphosphonates (CMP) and carbamoylmethylphosphine oxides (CMPO) with mercuric nitrate typically result in deprotonation of the methylene carbon atom spanning the phosphoryl and the amide carbonyl groups of the bifunctional ligand with concomitant formation of [Hg(L)](NO<sub>3</sub>) compounds containing a stable mercury-carbon Ï bond. The resulting organometallic compounds form dimers [Hg(L)(NO<sub>3</sub>)]<sub>2</sub> via bidentate interactions between the phosphoryl oxygen atom and carbonyl oxygen atom in one [Hg(L)]<sup>+</sup> unit and the Hg(II) ion in the second [Hg(L)]<sup>+</sup> unit. Additional examples of this general reactivity/structure pattern are reported herein. In contrast, in Hg(II) complexes of two CMPO derivatives, in which the amide N-atom is functionalized with a 2-methylpyridine group, the trifunctional phosphine oxides are observed to behave as neutral ligands forming complexes (LâČ)Hg (NO<sub>3</sub>)<sub>2</sub>.</p