488 research outputs found
The Mass of the White Dwarf Companion in the Self-Lensing Binary KOI-3278: Einstein vs. Newton
KOI-3278 is a self-lensing stellar binary consisting of a white-dwarf
secondary orbiting a Sun-like primary star. Kruse and Agol (2014) noticed small
periodic brightenings every 88.18 days in the Kepler photometry and interpreted
these as the result of microlensing by a white dwarf with about 63 of the
mass of the Sun. We obtained two sets of spectra for the primary that allowed
us to derive three sets of spectroscopic estimates for its effective
temperature, surface gravity, and metallicity for the first time. We used these
values to update the Kruse and Agol (2014) Einsteinian microlensing model,
resulting in a revised mass for the white dwarf of . The spectra also allowed us to determine radial velocities and
derive orbital solutions, with good agreement between the two independent data
sets. An independent Newtonian dynamical MCMC model of the combined velocities
yielded a mass for the white dwarf of . The nominal uncertainty for the Newtonian mass is about four times
better than for the Einsteinian, vs. and the difference
between the two mass determinations is . We then present a joint
Einsteinian microlensing and Newtonian radial velocity model for KOI-3278,
which yielded a mass for the white dwarf of . This joint model does not rely on any white dwarf evolutionary
models or assumptions on the white dwarf mass-radius relation. We discuss the
benefits of a joint model of self-lensing binaries, and how future studies of
these systems can provide insight into the mass-radius relation of white
dwarfs.Comment: ApJ Accepted; 22 Pages, 8 Figures, 6 Tables and 4 Supplementary
Table
Superconducting Vortex with Antiferromagnetic Core
We show that a superconducting vortex in underdoped high T_c superconductors
could have an antiferromagnetic core. This type of vortex configuration arises
as a topological solution in the recently constructed SO(5) nonlinear sigma
model and in Ginzburg-Landau theory with competing antiferromagnetic and
superconducting order parameters. Experimental detection of this type of vortex
by \mu SR and neutron scattering is proposed.Comment: revised version; 4 pages, LaTeX, 3 encapsulated postscript figures,
submitted to Phys. Rev. Let
The extracellular heparan sulfatase SULF2 limits myeloid IFNβ signaling and Th17 responses in inflammatory arthritis
Heparan sulfate (HS) proteoglycans are important regulators of cellular responses to soluble mediators such as chemokines, cytokines and growth factors. We profiled changes in expression of genes encoding HS core proteins, biosynthesis enzymes and modifiers during macrophage polarisation, and found that the most highly regulated gene was Sulf2, an extracellular HS 6-O-sulfatase that was markedly downregulated in response to pro-inflammatory stimuli. We then generated Sulf2+/− bone marrow chimeric mice and examined inflammatory responses in antigen-induced arthritis, as a model of rheumatoid arthritis. Resolution of inflammation was impaired in myeloid Sulf2+/− chimeras, with elevated joint swelling and increased abundance of pro-arthritic Th17 cells in synovial tissue. Transcriptomic and in vitro analyses indicated that Sulf2 deficiency increased type I interferon signaling in bone marrow-derived macrophages, leading to elevated expression of the Th17-inducing cytokine IL6. This establishes that dynamic remodeling of HS by Sulf2 limits type I interferon signaling in macrophages, and so protects against Th17-driven pathology
Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons.
While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions
The hyperfine transition in light muonic atoms of odd Z
The hyperfine (hf) transition rates for muonic atoms have been re-measured
for select light nuclei, using neutron detectors to evaluate the time
dependence of muon capture. For F = 5.6 (2)
s for the hf transition rate, a value which is considerably more
accurate than previous measurements. Results are also reported for Na, Al, P,
Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys.
Rev.
Contractile Function during Angiotensin-II Activation:Increased Nox2 Activity Modulates Cardiac Calcium Handling via Phospholamban Phosphorylation
AbstractBackgroundRenin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function.ObjectivesThis study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation.MethodsWe generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding.ResultsChronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice.ConclusionsWe identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation
The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50
We present dynamical modeling of the broad line region (BLR) in the Seyfert 1
galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN
Monitoring Project (LAMP) 2011. We model the reverberation mapping data
directly, constraining the geometry and kinematics of the BLR, as well as
deriving a black hole mass estimate that does not depend on a normalizing
factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is
a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a
width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of
25\pm10 degrees above the plane. We also constrain the inclination angle to be
9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is
inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the
virial black hole mass estimate from traditional reverberation mapping
analysis, we find the normalizing constant (virial coefficient) to be log10(f)
= 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74
based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies.
While our dynamical model includes the possibility of a net inflow or outflow
in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure
Recommended from our members
LDRD final report on Si nanocrystal as device prototype for spintronics applications.
The silicon microelectronics industry is the technological driver of modern society. The whole industry is built upon one major invention--the solid-state transistor. It has become clear that the conventional transistor technology is approaching its limitations. Recent years have seen the advent of magnetoelectronics and spintronics with combined magnetism and solid state electronics via spin-dependent transport process. In these novel devices, both charge and spin degree freedoms can be manipulated by external means. This leads to novel electronic functionalities that will greatly enhance the speed of information processing and memory storage density. The challenge lying ahead is to understand the new device physics, and control magnetic phenomena at nanometer length scales and in reduced dimensions. To meet this goal, we proposed the silicon nanocrystal system, because: (1) It is compatible with existing silicon fabrication technologies; (2) It has shown strong quantum confinement effects, which can modify the electric and optical properties through directly modifying the band structure; and (3) the spin-orbital coupling in silicon is very small, and for isotopic pure {sup 28}Si, the nuclear spin is zero. These will help to reduce the spin-decoherence channels. In the past fiscal year, we have studied the growth mechanism of silicon-nanocrystals embedded in silicon dioxide, their photoluminescence properties, and the Si-nanocrystal's magnetic properties in the presence of Mn-ion doping. Our results may demonstrate the first evidence of possible ferromagnetic orders in Mn-ion implanted silicon nanocrystals, which can lead to ultra-fast information process and ultra-dense magnetic memory applications
Comparative assessment of clinical rating scales in Wilson’s disease
Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism resulting in multifaceted neurological, hepatic, and psychiatric symptoms. The objective of the study was to comparatively assess two clinical rating scales for WD, the Unified Wilson’s Disease Rating Scale (UWDRS) and the Global Assessment Scale for Wilson’s disease (GAS for WD), and to test the feasibility of the patient reported part of the UWDRS neurological subscale (termed the “minimal UWDRS”). Methods: In this prospective, monocentric, cross-sectional study, 65 patients (median age 35 [range: 15–62] years; 33 female, 32 male) with treated WD were scored according to the two rating scales. Results: The UWDRS neurological subscore correlated with the GAS for WD Tier 2 score (r = 0.80; p < 0.001). Correlations of the UWDRS hepatic subscore and the GAS for WD Tier 1 score with both the Model for End Stage Liver Disease (MELD) score (r = 0.44/r = 0.28; p < 0.001/p = 0.027) and the Child-Pugh score (r = 0.32/r = 0.12; p = 0.015/p = 0.376) were weak. The “minimal UWDRS” score significantly correlated with the UWDRS total score (r = 0.86), the UWDRS neurological subscore (r = 0.89), and the GAS for WD Tier 2 score (r = 0.86). Conclusions: The UWDRS neurological and psychiatric subscales and the GAS for WD Tier 2 score are valuable tools for the clinical assessment of WD patients. The “minimal UWDRS” is a practical prescreening tool outside scientific trials
- …