2,676 research outputs found

    Tyrosine Hydroxylase and DOPA Decarboxylase Gene Variants in Personality Traits

    Get PDF
    Personality influences several characteristics of normal and pathologic behaviors and it is associated with neurotransmitter systems that are under genetic control. The dopaminergic system has been proposed to play a role in the modulation of personality traits. In the present study, variants of the tyrosine hydroxylase (TH) and DOPA decarboxylase (DDC) genes (for TH: rs3842727, rs6356; for DDC: rs1451371, rs1470750, rs998850) were investigated in 111 suicide attempters and 289 healthy subjects to assess the involvement of the dopaminergic synthesis pathway in personality traits. No strong evidence was found for the associations between personality and TH or DDC in overall tests. An interaction effect of genotype and diagnosis was present, with TH and DDC SNPs having a greater effect on the respective personality dimensions in the group of suicide attempters. Because of the risk of false positives, these findings should be interpreted with highest caution. Direct replication attempts within independent groups of suicide attempters will help to resolve this question. Copyright (C) 2009 S. Karger AG, Base

    What Should a Psychiatrist Know About Genetics? Review and Recommendations From the Residency Education Committee of the International Society of Psychiatric Genetics.

    Get PDF
    The International Society of Psychiatric Genetics (ISPG) created a Residency Education Committee with the purpose of identifying key genetic knowledge that should be taught in psychiatric training programs. Thirteen committee members were appointed by the ISPG Board of Directors, based on varied training, expertise, gender, and national origin. The Committee has met quarterly for the past 2 years, with periodic reports to the Board and to the members of the Society. The information summarized includes the existing literature in the field of psychiatric genetics and the output of ongoing large genomics consortia. An outline of clinically relevant areas of genetic knowledge was developed, circulated, and approved. This document was expanded and annotated with appropriate references, and the manuscript was developed. Specific information regarding the contribution of common and rare genetic variants to major psychiatric disorders and treatment response is now available. Current challenges include the following: (1) Genetic testing is recommended in the evaluation of autism and intellectual disability, but its use is limited in current clinical practice. (2) Commercial pharmacogenomic testing is widely available, but its utility has not yet been clearly established. (3) Other methods, such as whole exome and whole genome sequencing, will soon be clinically applicable. The need for informed genetic counseling in psychiatry is greater than ever before, knowledge in the field is rapidly growing, and genetic education should become an integral part of psychiatric training

    The Role of Parental Cognitive, Behavioral, and Motor Profiles in Clinical Variability in Individuals with Chromosome 16p11.2 Deletions

    Get PDF
    Importance Most disorders caused by copy number variants (CNVs) display significant clinical variability, often referred to as incomplete penetrance and variable expressivity. Genetic and environmental sources of this variability are not well understood. Objectives To investigate the contributors to phenotypic variability in probands with CNVs involving the same genomic region; to measure the effect size for de novo mutation events; and to explore the contribution of familial background to resulting cognitive, behavioral, and motor performance outcomes in probands with de novo CNVs. Design, Setting, and Participants Family-based study design with a volunteer sample of 56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from the Simons Variation in Individuals Project. Main Outcomes and Measures We used linear mixed-model analysis to measure effect size and intraclass correlation to determine the influence of family background for a de novo CNV on quantitative traits representing the following 3 neurodevelopmental domains: cognitive ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index, for comparison. Results A significant deleterious effect of the 16p11.2 deletion was demonstrated across all domains. Relative to the biparental mean, the effect sizes were −1.7 SD for cognitive ability, 2.2 SD for social behavior, and −1.3 SD for neuromotor performance (P \u3c .001). Despite large deleterious effects, significant positive correlations between parents and probands were preserved for the Full-Scale IQ (0.42 [P = .03]), the verbal IQ (0.53 [P = .004]), and the Social Responsiveness Scale (0.52 [P = .009]) scores. We also observed a 1-SD increase in the body mass index of probands compared with siblings, with an intraclass correlation of 0.40 (P = .07). Conclusions and Relevance Analysis of families with de novo CNVs provides the least confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant parent-proband correlations indicate that family background contributes to the phenotypic variability seen in this and perhaps other CNV disorders and may have implications for counseling families regarding their children’s developmental and psychiatric prognoses. Use of biparental mean scores rather than general population mean scores may be more relevant to examine the effect of a mutation or any other cause of trait variation on a neurodevelopmental outcome and possibly on systems of diagnosis and trait ascertainment for developmental disorders

    Leveraging neuroscience education to address stigma related to opioid use disorder in the community: a pilot study

    Get PDF
    Opioid use disorder (OUD) and overdose deaths are a public health crisis. One contributing factor is stigma towards people who use opioids. We developed and conducted a public-facing, half-day educational event designed to challenge misperceptions about OUD from a contemporary neuroscience perspective. Participants engaged with three different resources on the neurobiology of addiction, and, at the end of the event, they rated its effectiveness. We also collected and compared pre- and post-event composite OUD stigma scales. Participants rated our approach and the overall event as highly effective. Additionally, OUD stigma scores were lower immediately following the event, and this decrease was primarily driven by decreased internalized stigma. Here, we demonstrate an effective proof-of-concept that an accessible, public-facing, neuroscience education event may reduce OUD stigma in the community

    Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders.

    Get PDF
    International audienceBACKGROUND: Maternally derived duplications of the 15q11-q13 region are the most frequently reported chromosomal aberrations in autism spectrum disorders (ASD). Prader-Willi and Angelman syndromes, caused by 15q11-q13 deletions or abnormal methylation of imprinted genes, are also associated with ASD. However, the prevalence of these disorders in ASD is unknown. The aim of this study was to assess the frequency of 15q11-q13 rearrangements in a large sample of patients ascertained for ASD. METHODS: A total of 522 patients belonging to 430 families were screened for deletions, duplications, and methylation abnormalities involving 15q11-q13 with multiplex ligation-dependent probe amplification (MLPA). RESULTS: We identified four patients with 15q11-q13 abnormalities: a supernumerary chromosome 15, a paternal interstitial duplication, and two subjects with Angelman syndrome, one with a maternal deletion and the other with a paternal uniparental disomy. CONCLUSIONS: Our results show that abnormalities of the 15q11-q13 region are a significant cause of ASD, accounting for approximately 1% of cases. Maternal interstitial 15q11-q13 duplications, previously reported to be present in 1% of patients with ASD, were not detected in our sample. Although paternal duplications of chromosome 15 remain phenotypically silent in the majority of patients, they can give rise to developmental delay and ASD in some subjects, suggesting that paternally expressed genes in this region can contribute to ASD, albeit with reduced penetrance compared with maternal duplications. These findings indicate that patients with ASD should be routinely screened for 15q genomic imbalances and methylation abnormalities and that MLPA is a reliable, rapid, and cost-effective method to perform this screening

    Common Genetic Variants, Acting Additively, Are a Major Source of Risk for Autism

    Get PDF
    Background: Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods: By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results: By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions: Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability

    Common genetic variants, acting additively, are a major source of risk for autism

    Full text link
    Abstract Background Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.http://deepblue.lib.umich.edu/bitstream/2027.42/112370/1/13229_2012_Article_55.pd

    Analysis of X chromosome inactivation in autism spectrum disorders.

    Get PDF
    International audienceAutism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes

    Frequency of eNOS polymorphisms in the Colombian general population

    Get PDF
    BACKGROUND: Nitric oxide (NO) synthesized by endothelial cells is known to be a potent vasodilator. It has been suggested that polymorphisms in endothelial nitric oxide synthase (eNOS) can affect the response of the vascular endothelium to increased oxidative stress. The objective of the present study was to determine the presence of G894T (rs1799983), intron-4 (27-bp TR) and -T786C (rs2070744) polymorphisms in the eNOS gene among the Colombian general population. RESULTS: Genotype and allele frequencies showed significant differences in their distribution. White, black and mixed populations were in HW equilibrium for the variants in 27-bp TR- and rs1799983, but the black population was in HW disequilibrium for rs2070744 (p < 0.001). Allele "T" of rs1799983 polymorphisms was more common in the white population (26,5%) than the others, while allele "C" of rs2070744 polymorphisms had a similar frequency in all populations, and the allele 4a from 27-bp TR was more frequent in the black population (26,2%) than the others. Similar differences were found when genotypes were analyzed. CONCLUSION: The findings suggest that there is a substantial difference in the distribution of eNOS polymorphisms between different ethnic groups. These results could aid the understanding of inter-ethnic differences in NO bioavailability, cardiovascular risk, and response to drugs
    • …
    corecore