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The Role of Parental Cognitive, Behavioral,
and Motor Profiles in Clinical Variability in Individuals
With Chromosome 16p11.2 Deletions
Andres Moreno-De-Luca, MD; David W. Evans, PhD; K. B. Boomer, PhD; Ellen Hanson, PhD; Raphael Bernier, PhD;
Robin P. Goin-Kochel, PhD; Scott M. Myers, MD; Thomas D. Challman, MD; Daniel Moreno-De-Luca, MD;
Mylissa M. Slane, MS; Abby E. Hare, PhD; Wendy K. Chung, MD; John E. Spiro, PhD; W. Andrew Faucett, MS;
Christa L. Martin, PhD; David H. Ledbetter, PhD

IMPORTANCE Most disorders caused by copy number variants (CNVs) display significant
clinical variability, often referred to as incomplete penetrance and variable expressivity.
Genetic and environmental sources of this variability are not well understood.

OBJECTIVES To investigate the contributors to phenotypic variability in probands with CNVs
involving the same genomic region; to measure the effect size for de novo mutation events;
and to explore the contribution of familial background to resulting cognitive, behavioral, and
motor performance outcomes in probands with de novo CNVs.

DESIGN, SETTING, AND PARTICIPANTS Family-based study design with a volunteer sample of
56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from
the Simons Variation in Individuals Project.

MAIN OUTCOMES AND MEASURES We used linear mixed-model analysis to measure effect size
and intraclass correlation to determine the influence of family background for a de novo CNV
on quantitative traits representing the following 3 neurodevelopmental domains: cognitive
ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor
performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index,
for comparison.

RESULTS A significant deleterious effect of the 16p11.2 deletion was demonstrated across all
domains. Relative to the biparental mean, the effect sizes were −1.7 SD for cognitive ability,
2.2 SD for social behavior, and −1.3 SD for neuromotor performance (P < .001). Despite large
deleterious effects, significant positive correlations between parents and probands were
preserved for the Full-Scale IQ (0.42 [P = .03]), the verbal IQ (0.53 [P = .004]), and the Social
Responsiveness Scale (0.52 [P = .009]) scores. We also observed a 1-SD increase in the body
mass index of probands compared with siblings, with an intraclass correlation of 0.40
(P = .07).

CONCLUSIONS AND RELEVANCE Analysis of families with de novo CNVs provides the least
confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits
and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant
parent-proband correlations indicate that family background contributes to the phenotypic
variability seen in this and perhaps other CNV disorders and may have implications for
counseling families regarding their children’s developmental and psychiatric prognoses. Use
of biparental mean scores rather than general population mean scores may be more relevant
to examine the effect of a mutation or any other cause of trait variation on a
neurodevelopmental outcome and possibly on systems of diagnosis and trait ascertainment
for developmental disorders.

JAMA Psychiatry. 2015;72(2):119-126. doi:10.1001/jamapsychiatry.2014.2147
Published online December 10, 2014.
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T he recurrent deletion between break points 4 and 5 on
chromosome 16p11.2 (chr16: 29.5-30.1) is approxi-
mately 600 kilobases long, includes 29 genes, and is gen-

erated by nonallelic homologous recombination between flank-
ing segmental duplications. The deletion is one of the most
common pathogenic copy number variants (CNVs) and is as-
sociated with a broad range of neurodevelopmental and neu-
ropsychiatric diagnoses, including developmental delay, in-
tellectual disability, autism, and schizophrenia, among
others.1-4 In addition to the broad range of the clinical diag-
noses in individuals who carry the deletion (ie, carriers), the
16p11.2 deletion has also been reported in apparently healthy
individuals, a finding frequently interpreted as evidence of in-
complete penetrance.1,5 In a study of more than 100 000 ap-
parently unaffected control participants from the general popu-
lation of Iceland, 43 individuals with the 16p11.2 deletion were
identified. However, the individuals with this CNV exhibited
a variety of cognitive and neuropsychological deficits despite
the fact that none reached traditional clinical diagnostic thresh-
olds for a neurodevelopmental or a neuropsychiatric disorder.6

A report on 101 individuals with the 16p11.2 deletion noted
that the Full-Scale IQ (FSIQ) score was 2 SD lower in deletion
carriers compared with their relatives who did not carry the
deletion (ie, noncarriers).4 Approximately 15% of the pro-
bands met clinical criteria for autism spectrum disorders. In
more recent work, Hanson et al7 studied 80 probands with the
16p11.2 deletion using an extensive battery of assessments. Al-
though only 23% of the probands were diagnosed as having
an intellectual disability or borderline intellectual function-
ing, mean IQ scores were 26 points (1.8 SDs) lower than those
of noncarrier family members. Although only 25% of the pro-
bands met full clinical criteria for autism, a significant effect
on social functioning (as measured by the Social Responsive-
ness Scale [SRS]8) was identified as a 1.6-SD shift toward greater
impairment in probands compared with noncarrier family
members.7 In addition, individuals with the 16p11.2 deletion
showed a high frequency (>95%) of a variety of psychiatric and
developmental categorical diagnoses. Altogether, these data
indicate high penetrance for the clinically significant cogni-
tive, behavioral, and psychiatric impact of the deletion.

Such findings raise important questions as to what ac-
counts for the clinical heterogeneity of this and other CNV dis-
orders. The clinical manifestations of most genetic disorders
are highly variable, even when considering mendelian dis-
eases. For such single-gene disorders, clinical variability may
be attributed to variation in (1) the specific mutation type and
severity, (2) the expression of the remaining wild-type allele(s),
(3) other loci constituting the genetic background, and (4) non-
genetic environmental exposures during the life course.

Significant clinical variability is also the rule rather than
the exception for classic chromosomal disorders, such as tri-
somy 21 (Down syndrome) and sex chromosome variations. For
disorders involving aneuploidy, in contrast to monogenic men-
delian diseases, the mutation itself (an extra or a missing chro-
mosome) is identical across cases, so genetic contributions to
clinical variability must be due to variable expression of genes
on the involved chromosome(s), must reflect genetic back-
ground effects, or both.

Many of the traits that constitute the phenotypes of ge-
netic syndromes are distributed continuously in the general
population, and trait variability may be greatly influenced by
the parental genetic background. For example, approxi-
mately 90% of the trait variability for height and 30% to 70%
for cognitive ability are accounted for by the parental genetic
background.9,10 For some psychometric and anthropometric
quantitative traits (cognitive ability, height, head circumfer-
ence, and body mass index [BMI]), the best predictor of the out-
come of an individual from the general population is the bi-
parental mean value for such traits, with correlations typically
ranging from approximately 0.20 to 0.70.10 Social behavior, as
measured by the SRS, also demonstrates high heritability (an
approximate heritability estimate of 0.75), with parent-child
correlations of 0.50.11

We hypothesize that such parent-child relationships will
be preserved in CNV disorders, such as 16p11.2 deletions. Simi-
lar to aneuploidy syndromes in which the genetic abnormal-
ity is identical for all probands, the functional consequence of
recurrent CNVs is essentially identical across cases because the
break points lie within repetitive regions of the genome, and
the genes included in the intervening deleted or duplicated re-
gion are constant. Therefore, for recurrent CNVs, the genetic
contribution to clinical variability should be explained by vari-
able expression of the genes in the CNV interval and/or other
loci constituting the genetic background.

In this study, we examined the cognitive,10,12 social,13,14 and
motor15,16 profiles in 56 individuals with de novo deletions of
chromosome 16p11.2 and their noncarrier parents and sib-
lings. We also included BMI, an anthropometric trait that is
highly heritable and known to be increased in individuals with
16p11.2 deletions.17,18 We predicted that this quantitative ap-
proach would reveal a consistent deleterious impact of 16p11.2
deletions, even in cases in which clinical diagnostic thresh-
olds were not met. Consistent with previous work on indi-
viduals with chromosomal aneuploidy19-24 and the CNV asso-
ciated with Prader-Willi syndrome,25 we predicted that the
shared variance observed among first-degree relatives in the
general population would be preserved in families of pro-
bands with de novo 16p11.2 deletions.

Methods
Participants
The study was approved by the institutional review boards at
each of the following 3 Simons Variations in Individuals Proj-
ect phenotyping sites: Boston Children’s Hospital, Boston, Mas-
sachusetts; Baylor College of Medicine, Houston, Texas; and
University of Washington, Seattle. All participants provided
written informed consent before data collection.

We obtained data from the Simons Variation in Individuals
Project, which includes a large number of individuals with the
same recurrent break point 4 to 5 16p11.2 deletion and their fami-
lies. This study contains deidentified comprehensive pheno-
typic data for probands, their parents, and their siblings. De-
tails on recruitment strategy, the inclusion and exclusion criteria,
the genotyping and phenotyping tools used, and policies for data
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collection and sharing have been reported previously.7,26 The
analyses reported herein include 56 probands (≥2 years old) with
a de novo 16p11.2 deletion, their noncarrier biological parents,
and a noncarrier biological sibling closest in age to the pro-
band. A subset of these families have been described in prior
studies.4,7 The analyses were limited to de novo cases to avoid
potential confounding sources of variance associated with in-
herited disorders, such as assortative mating, in an effort to ac-
curately measure the effect size of the CNV and the influence
of the family background on a range of heritable traits.

Measures
Complete family data varied depending on the measure, result-
ing in the following sample sizes: 52 dyads for FSIQ and verbal
IQ (VIQ); 54 dyads for nonverbal IQ (NVIQ); 44 dyads for the SRS;
and 46 dyads for the Purdue Pegboard Test (PPT)27 (47 for the
dominant hand). Because BMI is highly age dependent, com-
parisons of BMI z scores were performed on probands and their
siblings who were at least 2 years of age (36 dyads).

We assessed IQ with the Wechsler Abbreviated Scale of
Intelligence,28 the Differential Ability Scales,29 or the Mullen
Scales of Early Learning,30 depending on age and develop-
mental functioning. We used the FSIQ, VIQ, and NVIQ in the
analyses (mean [SD] scores, 100 [15]).

The SRS is a 65-item, quantitative parent-reported or adult
self-reported measure that assesses social impairment asso-
ciated with autism spectrum disorders.8 The SRS is sensitive
to subclinical social impairment. Raw scores (mean [SD], 30
[20]) were used to provide greater differentiation of scores at
the lower and higher ends of the scales.

The PPT measures fine and gross motor dexterity and hand,
finger, and arm coordination.27 Participants are presented with
a board with 4 cups filled with pins across the top and 2 ver-
tical rows of 25 holes down the center. The participants are in-
structed to place as many pins as possible (in 30 seconds) down
the row on the side of their dominant hand, then the side of
their nondominant hand, and then the sides of both hands si-
multaneously, yielding separate scores for the dominant, the
nondominant, and both hands and generating standard scores
(mean [SD], 50 [10]) for each variable.

We calculated BMI by dividing the weight (in kilograms)
by the square of the height (in meters) for each age. The BMI
was then converted to a z score.

Statistical Analysis
Analyses were performed using commercially available soft-
ware (SPSS, version 20; IBM). We performed linear mixed-
model (LMM) analyses with unstructured covariance within
the family, allowing the variance-covariance to differ among
the proband, sibling, and parent within a family. Multiple
comparisons were adjusted with Bonferroni methods in the
presence of a significant overall family effect within the
LMM. We examined the differences between the probands’
observed and expected scores (ie, parent scores) using paired
t tests (when only 1 parent was available [13 families], the
available parent’s data were used instead of the biparental
mean). As recommended, we covaried for the SRS score in
the LMM for IQ comparisons, and we covaried for the IQ

scores in the LMM for SRS comparisons.31,32 Sex was not
included as a factor in the LMM because no sex could be
assigned to the biparental values. However, independent t
tests revealed no significant difference in the mean response
(FSIQ, VIQ, NVIQ, SRS, or PPT scores) owing to sex for the
probands or the siblings. We used the intraclass correlation
(ICC) to examine proband-parent correlations.

Results
FSIQ, VIQ, and NVIQ
We used LMM analysis to examine the mean differences among
family members for FSIQ, VIQ, and NVIQ, controlling for the
SRS score; we found no significant interaction between the SRS
score and the family member for these 3 outcomes. The LMM
analysis revealed statistically significant differences in the FSIQ
scores among the proband, sibling, and biparental mean scores
(F2,56.42 = 22.33 [P < .001]) and an SRS effect (F1,104.11 = 8.26
[P = .005]) (Table 1). The proband mean FSIQ score was sig-
nificantly lower than the parental and sibling mean FSIQ scores
(P < .001). The mean difference in proband-parent FSIQ scores
(mean [SD], 25.53 [15.09] for 52 pairs) revealed a 1.7-SD delete-
rious impact based on standardized IQ norms (Figure 1A). The
sibling FSIQ score also differed from the biparental mean score
(P = .04), although to a smaller degree than for probands.

Differences emerged among family members on the VIQ
scores (F2,52.53 19.91 [P < .001]; SRS effect, F1,102.86 = 6.52
[P = .01]). Mean scores for the probands differed significantly
from those for the parents and siblings (P < .001). The mean
difference between the proband and the parent VIQ scores
(mean [SD], −24.63 [15.77] for 52 pairs) showed a 1.6-SD effect
size for the deletion.

The analysis for the NVIQ score (F2,50.65 = 19.97 [P < .001])
also revealed the cognitive impact of de novo 16p11.2 dele-
tions, with the scores for the probands differing significantly
from those for the parents (P < .001) and siblings (P = .01); fur-
thermore, the scores for the siblings were different from those
for the parents (P = .001), but to a lesser extent than the scores
for the probands. Accounting for the SRS score revealed an
overall linear effect of the SRS on the NVIQ score (P = .01). The
mean difference between the scores for the probands and par-
ents (mean [SD], −25.08 [18.55] for 54 pairs) indicated a del-
eterious effect size of 1.7 SD in the NVIQ.

As noted above, in typical families, parent-child IQ corre-
lations range from approximately 0.30 to approximately 0.70.10

For the parent-proband dyads, the ICC for the mean FSIQ ap-
proached that observed in the general population (ICC51 = 0.42
[P = .03]); similar results were observed for the VIQ score
(ICC51 = 0.53; [P = .004]). The NVIQ score correlation did not
reach statistical significance (ICC53 = 0.20 [21]) (Table 1).

Despite the shift in the mean IQ of the probands relative
to the parents, the typical parent-child IQ correlation that is
observed in the general population is largely preserved, indi-
cating a significant role for parental background in determin-
ing the cognitive performance of a child with the 16p11.2 de-
letion. The exception was the NVIQ, which is less heritable than
the VIQ or the FSIQ in the typical population.33
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Social Responsiveness Scale
Significant differences emerged among first-degree relatives
on social behavior, measured by the SRS (F2,50 = 24.17
[P < .001]), controlling for the FSIQ score (F1,112.32 = 4.39
[P = .04]). The mean SRS score for probands differed from the
scores for parents and siblings (P < .001), but those for par-
ents and siblings did not differ from each other. The proband-
parent difference (mean [SD], 43.90 [29.44] for 44 pairs) indi-
cates a 2.2-SD effect size for the deletion (Figure 1B). As with
the IQ scores, the SRS scores were also highly and positively
correlated between the probands and their parents
(ICC43 = 0.52 [P = .009]), indicating an important contribu-
tion of parental social functioning to a proband’s perfor-
mance level. Although not part of our primary analysis for
this report, significant parent-proband correlations were also
observed for other adaptive and maladaptive behaviors as
indicated by components of the Vineland Adaptive Behavior
Scales34 and the Child Behavior Checklist35 (eTable in the
Supplement).

Purdue Pegboard Test
For the PPT score on the dominant hand, the LMM analysis
revealed differences among family members (F2,46.47 = 12.43
[P < .001]); the proband-parent (P < .001) and proband-
sibling (P = .01) differences were significant. The proband-
parent difference (mean [SD], −13.34 [18.05]) was signifi-
cantly greater than the sibling-parent difference and revealed
a 1.3-SD effect size. For the PPT score for the nondominant
hand, the LMM finding was also significant (F2,49.32 = 10.79
[P < .001]), with differences between the proband and the
biparental and sibling means (P < .001 for both), revealing a
1.3-SD effect size. The PPT scores for both hands also
revealed significant differences among probands, siblings,
and biparental means (F2,49.04 = 15.43 [P < .001]), with a

1.3-SD effect size relative to those of the parents (for 46 pairs)
(Figure 1C). The correlation comparing parent-proband
scores for both hands was in the expected direction but did
not reach statistical significance (ICC45 = 0.21 [P = .22])
(Table 1).

Body Mass Index
Proband and sibling BMI z scores differed significantly
(F1,47.71 = 19.25 [P < .001]), controlling for a significant inter-
action of age by family member (F1,65.64 = 0.85 [P = .36]). The
mean paired difference between the proband (mean [SD], 1.22
[1.16]) and the sibling (mean [SD], 0.26 [0.97]) BMI z score was
0.98 (SD, 1.36) or a 1-SD effect size toward a higher BMI (for 36
proband-sibling pairs). The correlation of the proband and sib-
ling BMI z score approached significance (ICC35 = 0.40 [P = .07])
(Figure 1D).

Discussion
The recurrent 16p11.2 deletion is one of the most common
pathogenic CNVs and is associated with a broad range of neu-
rodevelopmental and neuropsychiatric disorders.1-4 In this
study, we investigated the effect size of the 16p11.2 deletion
in de novo cases from a subset of the Simons Variations in
Individuals Project cohort.7 We examined quantitative trait
measures for cognitive, social, motor, and anthropometric
traits with known heritability to understand the contribution
of family background to the phenotypic variability of this
CNV.

Relative to first-degree family members, the effect size of
the de novo 16p11.2 deletion ranged from 1.0 to 2.2 SD on mea-
sures of cognitive, social, and motor performance and on BMI
(Figure 1 and eTable in the Supplement). The largest effect was

Table 1. Descriptive Statistics for Probands, Siblings, and Biparental Mean Scores on 4 Quantitative Traits

Domain

Proband Dataa Sibling Data Biparental Data

ICC P ValueMean (SD)
No. of

Participants Mean (SD)
No. of

Participants Mean (SD)
No. of

Participants
Cognitive

FSIQ score 86 (15) 54 106 (10) 38 112 (10) 54 0.42 .03

VIQ score 83 (17) 54 106 (11) 38 108 (9) 54 0.53 .004

NVIQ score 88 (17) 54 105 (11) 38 114 (10) 54 0.20 .21

Behavioral

SRS score 75 (33) 47 24 (25) 33 30 (18) 51 0.52 .009

Neuromotor

PPT score, DH 30 (16) 48 39 (12) 33 43 (9) 53 0.17 .27

PPT score, NDH 29 (16) 47 40 (12) 33 41 (10) 53 0.01 .81

PPT score, BH 30 (16) 47 43 (10) 33 42 (9) 53 0.21 .22

Anthropometric

BMI z scoreb 1.22 (1.16) 56 0.26 (0.97) 36 NA NA 0.40c .07

Abbreviations: BH, both hands; BMI, body mass index (calculated as the weight
in kilograms divided by the square of the height in meters); DH, dominant hand;
FSIQ, Full-Scale IQ; ICC, intraclass correlation; NA, not applicable;
NDH, nondominant hand; NVIQ; nonverbal IQ; PPT, Purdue Pegboard Test;
SRS, Social Responsiveness Scale; VIQ, verbal IQ.
a These sample sizes are based on total participants for each group. The linear

mixed-model comparisons and ICC in the results reflect only those data for
which matched samples of probands and first-degree relatives are available.

b Because BMI is highly age dependent, BMI z score comparisons were
performed on probands and their siblings as opposed to their parents.

c Indicates the ICC for the BMI in probands with siblings.
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on behavioral and cognitive domains, followed by motor per-
formance and BMI. In all domains, probands showed delete-
rious effects relative to expected outcomes given the biparen-
tal mean values.

Evidence of the parental influence on the phenotype re-
sulting from a de novo 16p11.2 deletion is represented by sig-
nificant ICCs between the parents (or the siblings) and the pro-
bands on key phenotypic features of this syndrome (Table 1
and eTable in the Supplement). These correlations indicate that
the observed shifts from the expected phenotype are not ran-
dom but rather are tied closely to familial background and in-
fluenced by parental traits, as is the case in the general popu-
lation. For most of the traits, the parent-proband correlations
were nearly identical to those observed in the general popu-
lation. Given the high heritability for each of these traits, a sig-
nificant portion of the parental influence is likely owing to ge-
netic background. The nature of the associations between the
biparental (or sibling in the case of BMI) and the proband mean
scores was found to be linear, with slope values ranging from
0.3844x (IQ) to 0.6656x (SRS) (eFigure in the Supplement). As
seen in the general population, a marked phenotypic variabil-
ity still exists for each individual, and parental cognitive, be-
havioral, and motor performances are not perfect predictors

of the child’s status. However, these findings raise the possi-
bility that when the effect of a CNV on various aspects of brain
function is known, assessment of parental phenotype may al-
low more accurate prediction of the expected range of perfor-
mance or the risk for particular clinical diagnoses in their off-
spring with the CNV.

Our findings emphasize the quantitative nature of clini-
cal expression in neurodevelopmental disorders and support
the recent proposal by Cuthbert and Insel36 to develop and
apply dimensional approaches to mental health research. A
dichotomous all-or-none approach to diagnosis has long
dominated the fields of medical genetics, psychiatry, and
psychology, in which the penetrance of a disorder in a popu-
lation is determined by dichotomizing a quantitative trait and
applying somewhat arbitrary thresholds to classify individu-
als as affected or unaffected. Although such approaches may
appeal to our tendency to adopt simplified heuristics, they
fail to recognize the complexity of a more nuanced, quantita-
tive underlying biological reality. Determining the relative
deleterious impact of genetic variants requires an estimate of
expected outcome, a benchmark representing the actual
potential phenotype, were it not for the genetic variant in
question.37

Figure 1. Distribution of 4 Core Traits in Probands With the De Novo 16p11.2 Deletion and Their Noncarrier Family Members
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The deleterious impact of the deletion and the intraclass correlation (ICC)
between probands and their first-degree relatives is indicated for each measure.
The arrows represent the direction of the shift of the proband’s distributions
relative to biparental and sibling distributions. A, Full-Scale IQ (FSIQ). B, Social
Responsiveness Scale (SRS). C, Purdue Pegboard Test (PPT). D, Body mass
index (BMI; calculated as the weight in kilograms divided by the square of the

height in meters). We transformed the FSIQ, SRS, PPT, and BMI data into a
normal distribution using commercially available software (NORMDIST function
[x, mean, SD, and cumulative] in Microsoft Excel, version 14.3.9; Microsoft
Corporation). The cumulative was set to false to obtain the height of the
probability density curve.
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In a recent report,37 parental scores on quantitative mea-
sures were used in a model as an estimate of a child’s ex-
pected performance or as a starting point from which the del-
eterious impact of a CNV is subtracted when evaluating the
contribution of that CNV to developmental brain dysfunc-
tion. Herein, we tested this model and provided familial data
that illustrate that the variability associated with a given CNV
must be considered in relation to the biparental mean when-
ever heritable quantitative traits are involved. As shown in
Figure 2, probands with the identical CNV all show a delete-
rious effect compared with parents and siblings but may have
different combinations of clinical diagnoses. In Family 14718
(Figure 2A), the deleterious effect of the deletion on quanti-
tative cognitive and motor traits results in FSIQ and PPT scores
below the diagnostic threshold line, whereas the behavioral
domain performance is still within the reference range. This
patient has clinical diagnoses of intellectual disability and de-
velopmental coordination disorder but not autism. In Family
14747 (Figure 2B), the proband’s cognitive performance is de-
creased compared with that of the parents but still within the
reference range, whereas the behavioral score is within the im-
paired range, consistent with this patient’s clinical diagnosis
of autism. In Family 14795 (Figure 2C), the proband has a quan-
titative neurodevelopmental profile suggestive of isolated mo-
tor deficiency without cognitive or behavioral impairments,
which matches this individual’s diagnosis of developmental
coordination disorder without intellectual disability or au-
tism. The variability of clinical diagnoses in part depends on
the parental cognitive, social, and motor performance levels.
This dependence indicates that the biparental mean values
rather than the general population mean values may be more
appropriate in measuring the effect size on neurodevelopmen-
tal outcomes for a given CNV and for predicting the potential
range of outcomes for any individual child.37

Estimating the deleterious impact of genetic mutations
through the assessment of quantitative traits in the context
of familial background has been considered for at least 50
years (Table 2). At least 6 studies report that, although indi-
viduals with Turner syndrome exhibited the expected shorter
stature, the parent-proband correlation for height was con-
served (r range, 0.42-0.84).19-22 Similarly, in Klinefelter syn-
drome, investigators have reported the increased height asso-
ciated with the XXY chromosomal complement while also
noting that the correlation between biparental and child
height that is observed in typical families was preserved
(r = 0.62).19 Moreover, a recent study on 118 individuals with
Klinefelter syndrome23 showed a significant effect of familial
learning disabilities on the proband’s neurodevelopmental
outcomes.

Such findings also hold true for other traits. Children with
Down syndrome exhibited significant IQ deficits, and yet a
strong correlation with parental IQ was preserved.24 Studies
on Prader-Willi syndrome25 also showed that significant parent-
child correlations are retained for IQ (r = 0.33), height (r = 0.52),
and BMI (r = 0.53). Altogether, the data given in the present
study combined with previous reports indicate that, despite
the significant deleterious impact associated with chromo-
somal aneuploidy or CNVs, a proband’s performance levels on

Figure 2. Neurodevelopmental Profiles of 3 Simons Variations
in Individuals Project Families Showing the Deleterious Impact
of the De Novo 16p11.2 Deletion Across Cognitive, Behavioral, and Motor
Streams of Development
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As in the general population, the expected profile of the abilities of the
noncarrier siblings (controls) is represented on the left side as a range 2 SDs
above and below the biparental mean. For the probands, the expected
neurodevelopmental profile needs to be adjusted (dotted lines) to account for
the impact of the 16p11.2 deletion and is represented on the right side by a
range 2 SDs above and below the adjusted mean, which was calculated by
subtracting the de novo deletion effect size from the biparental mean score for
each domain (cognitive: 1.7 SDs for the Full-Scale IQ [FSIQ]; behavioral: 2.2 SDs
for the Social Responsiveness Scale [SRS]; and motor: 1.3 SDs for the Purdue
Pegboard Test [PPT]). The dashed line represents the diagnostic threshold
(depicted here as 2 SDs below the mean).
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a variety of quantitative traits is significantly influenced by fa-
milial background.40

The argument that the 16p11.2 deletion represents a
variant with incomplete penetrance is not supported by the
quantitative approach reported herein and previously.3,37

Simply because arbitrary diagnostic thresholds are not met
does not indicate that a particular proband is unaffected or
that a given mutation confers no deleterious impact in some
individuals. Our findings highlight the importance of study-
ing genetically distinct subgroups of individuals with neu-
rodevelopmental disorders relative to their own familial/
genetic background to determine, in a quantitative manner,
the extent to which a given genetic mutation affects all
aspects of development. Limiting the analyses to de novo
cases provides the clearest test of the effect of a CNV on
heritable traits because including inherited cases may in-

troduce other sources of variance, such as assortative mat-
ing and likely the deleterious effect of the ability of the
carrier parent to raise the child and provide a nurturing
environment.

Conclusions
Understanding the developmental profiles of populations with
CNVs and single gene mutations relative to family back-
ground requires a multidimensional, quantitative approach.
The resulting information may have important clinical utility
in guiding clinical geneticists, neurodevelopmental pediatri-
cians, genetic counselors, and others as they work with fami-
lies to better understand the developmental implications of a
variety of specific genetic mutations.
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Table 2. Summary of Studies Assessing Parental Influence on Height and IQ for Selected Genetic Syndromes

Syndrome

Height IQ

Source
Effect Size,

SD
Correlation,

r Valuea
Effect Size,

SD
Correlation,

r Value
45,X NA 0.84 NA NA Lemli et al,38 1963

45,X −3.07 0.84 NA NA Brook et al,39 1974

45,X −4.44 0.61 NA NA Brook et al,19 1977

45,X >−2.00 0.49 NA NA Massa and
Vanderschueren-Lodeweyckx,20 1991

45,X −4.08 0.69 NA NA Holl et al,21 1994

45,X −4.07 0.50 (F),
0.42 (M)

NA NA Rochiccioli et al,22 1994

47,XX+21 −1.87 (F),
−4.86 (M)

0.29 (F),
0.21 (M)

NA NA Brook et al,19 1977

47,XX+21 NA NA −3.17b 0.50 (F),
0.42 (M)

Fraser and Sadovnick,24 1976

47,XX+21 NA NA −5.27c 0.29 (F),
0.69 (M)

Fraser and Sadovnick,24 1976

47,XXY +2.15 0.62 NA NA Brook et al,19 1977

Prader-Willi −0.9 (F),
−1.9 (M)

0.46 (F),
0.54 (M)

−2.9 (F),
−2.8 (M)

0.58 (female),d

0.12 (male)
Malich et al,25 2000

Abbreviations: F, fathers; M, mothers;
NA, not available.
a Indicates proband-parent

correlation.
b Includes home-reared probands.
c Includes institutionalized probands.
d Includes IQ data on mothers only.
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