49 research outputs found

    Trinuclear Cage-Like ZnII Macrocyclic Complexes: Enantiomeric Recognition and Gas Adsorption Properties

    Get PDF
    Three zinc(II) ions in combination with two units of enantiopure 3+3 triphenolic Schiff base macrocycles 1, 2, 3 or 4 form cage-like chiral complexes. The formation of these complexes is accompanied by the enantioselective self-recognition of chiral macrocyclic units. The X-ray crystal structures of these trinuclear complexes show hollow metal-organic molecules. In some crystal forms, these barrel-shaped complexes are arranged in a window-to-window fashion which results in formation of 1-D channels and combination of intrinsic porosity with extrinsic porosity. The microporous nature of the [Zn312] complex is reflected in its N2, Ar, H2 and CO2 adsorption properties. The N2 and Ar adsorption isotherms showed pressure gating behaviour which is without precedent for any noncovalent porous material. The comparison of the structures of the [Zn312] and [Zn332] complexes with that of the free macrocycle H31 reveals a striking structural similarity. In the latter compound two macrocyclic units stitched together by hydrogen bonds form a cage very similar to that formed by two macrocyclic units stitched together by Zn(II) ions. This structural similarity is manifested also by the gas adsorption properties of the free H31 macrocycle. Recrystallization of [Zn312] in the presence of racemic 2-butanol results in enantioselective binding of the (S)-2-butanol inside the cage via coordination to one of Zn(II) ions.This work was supported by the NCN (NarodoweCentrumNauki, Poland) (grant 2011/03/B/ST5/01060).D.P.and J.L.thank the FNP Program“Mistrz” for financial support, and D.F.-J. thanks the Royal Society for funding through a University Research Fellowship.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/chem.20150347

    Ultrasound-assisted exfoliation of a layered 2D coordination polymer with HER electrocatalytic activity

    Get PDF
    Altres ajuts: the ICN2 is funded by the CERCA programme/Generalitat de Catalunya. NoemĂ­ Contreras Pereda's project that gave rise to these results received the support of a fellowship from "laCaixa" Foundation (ID 100010434). The fellowship code is LCF/BQ/ES17/11600012. Renhao Dong acknowledgements the financial support DFG project (SPP 1928, COORNETs).Large blue rectangular crystals of the 2D layered coordination polymer 1 have been obtained. The interest for this complex is two-fold. First, complex 1 is made of 2D layers packing along the (0-11) direction favored by the presence of lattice and coordinated water molecules. And second, nanostructures that could be derived by delamination are potentially suitable for catalytic purposes. Therefore it represents an excellent example to study the role of interlayer solvent molecules on the ultrasound-assisted delamination of functionally-active 2D metal-organic frameworks in water, a field of growing interest. With this aim, ultrasound-assisted delamination of the crystals was optimized with time, leading to stable nanosheet colloidal water suspensions with very homogeneous dimensions. Alternative bottom-up synthesis of related nanocrystals under ultrasound sonication yielded similar shaped crystals with much higher size dispersions. Finally, experimental results evidence that the nanostructures have higher catalytic activities in comparison to their bulk counterparts, due to larger metallic center exposition. These outcomes confirm that the combination of liquid phase exfoliation and a suitable synthetic design of 2D coordination polymers represents a very fruitful approach for the synthesis of functional nanosheets with an enhancement of catalytic active sites, and in general, with boosted functional properties

    Washable, Low-Temperature Cured Joints for Textile-Based Electronics

    Get PDF
    Low-temperature die-attaching pastes for wearable electronics are the key components to realize any type of device where components are additively manufactured by pick and place techniques. In this paper, the authors describe a simple method to realize stretchable, bendable, die-attaching pastes based on silver flakes to directly mount resistors and LEDs onto textiles. This paste can be directly applied onto contact pads placed on textiles by means of screen and stencil printing and post-processed at low temperatures to achieve the desired electrical and mechanical properties below 60 °C without sintering. Low curing temperatures lead to lower power consumption, which makes this paste ecological friendly

    Transmission of Stress-Induced Learning Impairment and Associated Brain Gene Expression from Parents to Offspring in Chickens

    Get PDF
    BACKGROUND: Stress influences many aspects of animal behaviour and is a major factor driving populations to adapt to changing living conditions, such as during domestication. Stress can affect offspring through non-genetic mechanisms, but recent research indicates that inherited epigenetic modifications of the genome could possibly also be involved. METHODOLOGY/PRINCIPAL FINDINGS: Red junglefowl (RJF, ancestors of modern chickens) and domesticated White Leghorn (WL) chickens were raised in a stressful environment (unpredictable light-dark rhythm) and control animals in similar pens, but on a 12/12 h light-dark rhythm. WL in both treatments had poorer spatial learning ability than RJF, and in both populations, stress caused a reduced ability to solve a spatial learning task. Offspring of stressed WL, but not RJF, raised without parental contact, had a reduced spatial learning ability compared to offspring of non-stressed animals in a similar test as that used for their parents. Offspring of stressed WL were also more competitive and grew faster than offspring of non-stressed parents. Using a whole-genome cDNA microarray, we found that in WL, the same changes in hypothalamic gene expression profile caused by stress in the parents were also found in the offspring. In offspring of stressed WL, at least 31 genes were up- or down-regulated in the hypothalamus and pituitary compared to offspring of non-stressed parents. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, in WL the gene expression response to stress, as well as some behavioural stress responses, were transmitted across generations. The ability to transmit epigenetic information and behaviour modifications between generations may therefore have been favoured by domestication. The mechanisms involved remain to be investigated; epigenetic modifications could either have been inherited or acquired de novo in the specific egg environment. In both cases, this would offer a novel explanation to rapid evolutionary adaptation of a population

    Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens

    Get PDF
    Background: Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings: Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12:12 h light:dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance: Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment. Citation: Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen PA, et al. (2009) Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens. PLoS ONE 4(7): e6405. doi:10.1371/journal.pone.0006405 Editor: Tom Pizzari, University of Oxford, United Kingdom Received: March 26, 2009; Accepted: June 30, 2009; Published: July 28, 2009 Copyright: © 2009 Nätt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This project was funded by the Swedish Research Council (VR; www.vr.se; grant nrs 50280101 and 50280102) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas; www.formas.se; grant no 221-2005-270). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the mauscript. Competing interests: The authors have declared that no competing interests exist.  Original Publication:Daniel Nätt, Niclas Lindqvist, Henrik Stranneheim, Joakim Lundeberg, Peter A. Torjesen and Per Jensen, Inheritance of Acquired Behaviour Adaptions and Brain Gene Expression in Chickens, 2009, PLoS ONE, (4), 7, e6405.http://dx.doi.org/10.1371/journal.pone.0006405Copyright: Author

    Tactile Robotic Skin with Pressure Direction Detection

    No full text
    Tactile sensing is the current challenge in robotics and object manipulation by machines. The robot’s agile interaction with the environment requires pressure sensors to detect not only location and value, but also touch direction. The paper presents a new, two-layer construction of artificial robotic skin, which allows measuring the location, value, and direction of pressure from external force. The main advantages of the proposed solution are its low cost of implementation based on two FSR (Force Sensitive Resistor) matrices and real-time operation thanks to direction detection using fast matching algorithms. The main contribution is the idea of detecting the pressure direction by determining the shift between the pressure maps of the skin’s upper and lower layers. The pressure map of each layer is treated as an image and registered using a phase correlation (POC–Phase Only Correlation) method. The use of the developed device can be very wide. For example, in the field of cooperative robots, it can lead to the improvement of human machine interfaces and increased security of human–machine cooperation. The proposed construction can help meet the increasing requirements for robots in cooperation with humans, but also enable agile manipulation of objects from their surroundings

    Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications

    No full text
    We report here on printed electroluminescent structures containing transparent electrodes made of carbon nanotubes and graphene nanoplatelets. Screen-printing and spray-coating techniques were employed. Electrodes and structures were examined towards optical parameters using spectrophotometer and irradiation meter. Electromechanical properties of transparent electrodes are exterminated with cyclical bending test. Accelerated aging process was conducted according to EN 62137 standard for reliability tests of electronics. We observed significant negative influence of mechanical bending on sheet resistivity of ITO, while resistivity of nanotube and graphene based electrodes remained stable. Aging process has also negative influence on ITO based structures resulting in delamination of printed layers, while those based on carbon nanomaterials remained intact. We observe negligible changes in irradiation for structures with carbon nanotube electrodes after accelerated aging process. Such materials demonstrate a high application potential in general purpose electroluminescent devices
    corecore