1,224 research outputs found

    On the Virialization of Disk Winds: Implications for the Black Hole Mass Estimates in AGN

    Full text link
    Estimating the mass of a supermassive black hole (SMBH) in an active galactic nucleus (AGN) usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems invalid in BLR models that consists of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, the wind material must, beyond a certain point, be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we check whether gravity governs the flow properties, by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies, We find that in the first two models, the winds are non-virialized whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin2i1/ \sin^2{i}. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum -- as in the models considered here, than when it conserves the angular velocity -- as in the so-called magneto-centrifugal winds.Comment: Accepted to Ap

    Learning in neural networks with material synapses

    Get PDF
    We discuss the long term maintenance of acquired memory in synaptic connections of a perpetually learning electronic device. This is affected by ascribing each synapse a finite number of stable states in which it can maintain for indefinitely long periods. Learning uncorrelated stimuli is expressed as a stochastic process produced by the neural activities on the synapses. In several interesting cases the stochastic process can be analyzed in detail, leading to a clarification of the performance of the network, as an associative memory, during the process of uninterrupted learning. The stochastic nature of the process and the existence of an asymptotic distribution for the synaptic values in the network imply generically that the memory is a palimpsest but capacity is as low as log N for a network of N neurons. The only way we find for avoiding this tight constraint is to allow the parameters governing the learning process (the coding level of the stimuli; the transition probabilities for potentiation and depression and the number of stable synaptic levels) to depend on the number of neurons. It is shown that a network with synapses that have two stable states can dynamically learn with optimal storage efficiency, be a palimpsest, and maintain its (associative) memory for an indefinitely long time provided the coding level is low and depression is equilibrated against potentiation. We suggest that an option so easily implementable in material devices would not have been overlooked by biology. Finally we discuss the stochastic learning on synapses with variable number of stable synaptic states

    Microscopic approach to orientational order of domain walls

    Get PDF
    We develop a fully microscopic, statistical mechanics approach to study phase transitions in Ising systems with competing interactions at different scales. Our aim is to consider orientational and positional order parameters in a unified framework. In this work we consider two dimensional stripe forming systems, where nematic, smectic and crystal phases are possible. We introduce a nematic order parameter in a lattice, which measures orientational order of interfaces. We develop a mean field approach which leads to a free energy which is a function of both the magnetization (density) and the orientational (nematic) order parameters. Self-consistent equations for the order parameters are obtained and the solutions are described for a particular system, the Dipolar Frustrated Ising Ferromagnet. We show that this system has an Ising-nematic phase at low temperatures in the square lattice, where positional order (staggered magnetization) is zero. At lower temperatures a crystal-stripe phase may appear. In the continuum limit the present approach connects to a Ginsburg-Landau theory, which has an isotropic-nematic phase transition with breaking of a continuous symmetry.Comment: 9 pages, 7 figures, revised and expanded, published versio

    Near-inertial kinetic energy budget of the mixed layer and shear evolution in the transition layer in the Arabian Sea during the monsoons

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6492–6507, doi:10.1002/2014JC010198.We present the horizontal kinetic energy (KE) balance of near-inertial currents in the mixed layer and explain shear evolution in the transition layer using observations from a mooring at 15.26° N in the Arabian Sea during the southwest monsoon. The highly sheared and stratified transition layer at the mixed-layer base varies between 5 m and 35 m and correlates negatively with the wind stress. Results from the mixed layer near-inertial KE (NIKE) balance suggest that wind energy at times can energize the transition layer and at other times is fully utilized within the mixed layer. A simple two layer model is utilized to study the shear evolution in the transition layer and shown to match well with observations. The shear production in this model arises from alignment of wind stress and shear. Although the winds are unidirectional during the monsoon, the shear in the transition layer is predominantly near-inertial. The near-inertial shear bursts in the observations show the same phasing and magnitude at near-inertial frequencies as the wind-shear alignment term.NASA Grant Number: NNX12AD47G, NSF Grant Number: 0928138, ONR Grant Numbers: N00014-11-1-0429 and N00014-10-1-0273, NSF Grant Number: OCE-07455082016-03-2

    Specific Soluble Oligomers of Amyloid-β Peptide Undergo Replication and Form Non-Fibrillar Aggregates in Interfacial Environments

    Get PDF
    Aggregates of amyloid-β (Aβ) peptides have been implicated in the etiology of Alzheimer disease. Among the different forms of Aβ aggregates, low molecular weight species ranging between ∼2- and 50-mers, also called “soluble oligomers,” have emerged as the species responsible for early synaptic dysfunction and neuronal loss. Emerging evidence suggests that the neurotoxic oligomers need not be formed along the obligatory nucleation-dependant fibril formation pathway. In our earlier work, we reported the isolation of one such “off-pathway” 12–18-mer species of Aβ42 generated from fatty acids called large fatty acid-derived oligomers (LFAOs) (Kumar, A., Bullard, R. L., Patel, P., Paslay, L. C., Singh, D., Bienkiewicz, E. A., Morgan, S. E., and Rangachari, V. (2011) PLoS One 6, e18759). Here, we report the physiochemical aspects of LFAO-monomer interactions as well as LFAO-LFAO associations in the presence of interfaces. We discovered that LFAOs are a replicating strain of oligomers that recruit Aβ42 monomers and quantitatively convert them into LFAO assemblies at the expense of fibrils, a mechanism similar to prion propagation. We also found that in the presence of hexane-buffer or chloroform-buffer interfaces LFAOs are able to associate with themselves to form larger but non-fibrillar aggregates. These results further support the hypothesis that low molecular weight oligomers can be generated via non-fibril formation pathways. Furthermore, the unique replicating property of off-pathway oligomers may hold profound significance for Alzheimer disease pathology
    corecore