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We discuss the long term maintenance of acquired memory in synaptic 
connections of a perpetually learning electronic device. This is affected 
by ascribing each synapse a finite number of stable states in which it 
can maintain for indefinitely long periods. Learning uncorrelated stim- 
uli is expressed as a stochastic process produced by the neural activities 
on the synapses. In several interesting cases the stochastic process can 
be analyzed in detail, leading to a clarification of the performance of 
the network, as an associative memory, during the process of uninter- 
rupted learning. The stochastic nature of the process and the existence 
of an asymptotic distribution for the synaptic values in the network im- 
ply generically that the memory is a palimpsest but capacity is as low 
as log N for a network of N neurons. The only way we find for avoiding 
this tight constraint is to allow the parameters governing the learning 
process (the coding level of the stimuli; the transition probabilities for 
potentiation and depression and the number of stable synaptic levels) 
to depend on the number of neurons. It is shown that a network with 
synapses that have two stable states can dynamically learn with opti- 
mal storage efficiency, be a palimpsest, and maintain its (associative) 
memory for an indefinitely long time provided the coding level is low 
and depression is equilibrated against potentiation. We suggest that 
an option so easily implementable in material devices would not have 
been overlooked by biology. Finally we discuss the stochastic learning 
on synapses with variable number of stable synaptic states. 

1 Introduction 

1.1 Memory Maintenance on Long Tinie Scales. A material neural 
network that is supposed to learn dynamically receives an uninterrupted 
flow of uncorrelated stimuli to be learned. The stimuli impinge on-neural 
elements connected by synapses. An incoming stimulus imposes a cer- 
tain activity distribution on the neural elements and each pair of neurons 
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generates a source for the learning by the synapse connecting them. On a 
short time scale it may be reasonable to assume that a synapse can mod- 
ify its efficacy in an analog way, as would be the case for a capacitor. On 
long time scales, if memory is to be maintained even in the absence of 
stimuli and of neural activity, it is more likely that a synapse can preserve 
only a relatively small set of stable values. These we would identify with 
LTP. For the capacitor this is implemented by an asynchronous, continu- 
ous, stochastic threshold controlled refresh mechanism (Amit et al. 1992; 
Badoni et al. 1992). The discretized long-term synaptic values achieved 
this way must allow the network to act as an associative memory. 

1.2 Learning as a Stochastic Process and Palimpsest Memory. Learn- 
ing is a stochastic process either due to the nature of the data or due to 
the dynamics of synaptic modification. A stimulus in the sequence pre- 
sented to the network is represented by a set of activity levels imposed 
on the neurons during its presentation. Since the stimuli are assumed un- 
correlated each synapse will see a random sequence of pairs of activities 
on the two neurons connected by it. This is one source of stochastic- 
ity. We denote the information arriving on a given neuron by a binary 
variable J, indicating whether the corresponding neuron does or does 
not carry information. The second source of stochasticity is due to two 
possible factors. The actual coding of information on the neurons may 
be analog and hence the effect on the synapse may not be the same when 
the presented pattern has information represented with different ampli- 
tudes (such as different spike rates). Moreover, even given the same 
incoming pair of neural activities, it may still be the case that the transi- 
tion from one stable synaptic state to another may not be deterministic 
(there may be noise in the threshold for the synaptic transition from one 
stable synaptic state to another). In other words, even upon the arrival 
of the same pair of information coding discrete variables a synapse will 
undergo the implied transition with probability that may be lower than 
unity. 

As a consequence the presentation of a sequence of ?correlated stim- 
uli induces a Markovian process on the set of values of the N(N - 1) 
synapses. More formally, the probability that a synapse makes a transi- 
tion J -, J' is a product of pl (J, t), the probability of the arrival of the pair 
[,I on the two neurons connected by the synapse, and the-probability 
that given that pair the transition takes place, p2(J --+ J' I E ,  J). We shall 
further assume that a given pair J, < can produce a transition between a 
single pair of neighboring synaptic states, or no transition at all. 

The resulting Markovian process is a walk on the finite set of sta- 
ble synaptic values and will be described by the probability distribution 
function of the sycaptic values. In particular, the conditional distribu- 
tion function d ( J ,  J) of obtaining the value J following the presentation 
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of p patterns the first of which imposed J, on the synapse satisfies the 
evolution equation: 

in which MK, is the transition matrix whose elements are determined by 
the probabilities discussed above and the index J runs over all the stable 
synaptic states. 

The first conclusion is that this type of dynamics is generically ergodic 
(see, e.g., Section 3). When the number of presented patterns becomes 
very large 

which is independent of [, I. This makes a memory of this type a 
palimpsest (Nadal et al. 1986). In other words, patterns learned far in 
the past are erased by new patterns learned subsequently in sharp con- 
trast to memories of the Hopfield or the Willshaw types (Hopfield 1982; 
Willshaw 1969). In the latter, when considered as a learning dynamics, 
following a large number of presentations all memory is destroyed (Amit 
et al. 1987). 

An immediate implication of the existence of an asymptotic distribu- 
tion of synaptic values, for a network that is to be available for learning 
for indefinitely long periods, is that the generic initial distribution on top 
of which learning new patterns is to take place is the asymptotic distri- 
bution p?. Having an asymptotic distribution is a necessary condition 
for palimpsest behavior. It is not sufficient. The asymptotic distribution 
must be such as to allow the learning process to imprint new stimuli 
upon it. A counterexample is provided by the Willshaw (1969) model, in 
which the asymptotic distribution is a synaptic distribution for which all 
synapses have the value +1 with probability 1. The presentation of any 
subsequent pattern will leave this distribution invariant and no retrieval 
is possible (see also Section 5). 

To have a functioning learning network with a finite number of synap- 
tic states, the presentation of a given new stimulus must change the condi- 
tional distribution pJ(J, i). Following the presentation of a given pattern 
consecutive presentations drive the conditional distribution back toward 
the asymptotic form, making the effect of the initial pattern progressively 
weaker. The question of the number of patterns that can be retrieved re- 
duces therefore to the question about the age (distance into the past) of 
the oldest pattern that can still be retrieved, despite the effect of the sub- 
sequent patterns. Given the palimpsestic nature of the process, younger 
patterns can be retrieved a fortiori. 

1.3 The Findings. We analyze the learning process as described above 
for a wide variety of cases. One main conclusion, already. noticed in 
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Amit and Fusi (1992), is that if all parameters such as number of states 
per synapse; coding level in stimuli, and transition probabilities of a 
synapse for a given pair of neural activity variables, are independent of 
the number of neurons in the network, then at most logN patterns can 
be retrieved. 

Making some of these parameters N-dependent one can do better. 
If the number of synaptic states increases with N, as fast as a, then 
one can reach a storage of order N. This was also observed in Nadal 
et al. (1986) and Parisi (1986). Going beyond in the number of states 
destroys the palimpsest behavior. Special initial synaptic conditions be- 
come required and the network suffers from the blackout effect, that is, 
all memories disappear together. 

We then study a network with two states per synapse. In this case we 
find that if the coding level in the arriving stimuli is as low as log N/N one 
can reach storage capacities as high as N/ log N. For this type of patterns 
it was found (Willshaw 1969) that a network with two state synapses 
could have the optimal storage of N2/ log2 N patterns. This is the price 
paid here for uninterrupted learning. Yet, when the intrinsic synaptic 
transition probabilities compensate for the coding level to make the mean 
number of up transitions (potentiation) of the same order as the number 
of down transitions (depression), one recovers optimal storage and enjoys 
continual learning. This additional requirement finds an interesting echo 
in recent experiments on potentiation and depression in hippocampal 
slices (Stanton and Sejnowski 1989). 

2 Criteria for Retrieval 

In the simple case of autoassociative memory the possibility of retrieving 
a memory is determined by the distribution of depolarizations among the 
neurons in the network upon the presentation of one of the previously 
memorized patterns. If that distribution is such that there exists a thresh- 
old that separates the depolarization of neurons that had been active in 
the learned pattern from those that had been quiescent, retrieval is in 
principle possible. The situation is even better if one c h  show that the 
relevant threshold can be plausibly generated by the neural dynamics. 
Retrieval is impossible, without errors if the two distributions of depo- 
larizations overlap significantly (see, e.g., Weisbuch and Fogelman-Soulie 
1985). The distribution of postsynaptic inputs is determined in turn by 
the collection of synaptic values. 

The conditional distribution, equation 1.1, allows for the computation 
of the (conditional) mean of the synaptic input to a neuron that p patterns 
into the past had activity [. Similarly, we can compute the fluctuations of 
the postsynaptic input. If the sequence of afferent stimuli to be learned 
is [:, [: . . . [r, then the synaptic input to neuron i upon presentation of 

the oldest memory fl, following the learning of the entire sequence is 

1 
h7 = - Jq(p)f/ 

N j=1 

where Jii(p) is the synaptic efficacy following the learning of the p pat- 
terns, and 1/N is a normalizing constant introduced for convenience. 
The synaptic inputs, hy, can be classified according to the value that was 
imposed on neuron i during the imposition of pattern number 1. If the 
neural activity is coded by a binary variable ([; = (1,(2), there will be 
two distributions of synaptic inputs: one for neurons that saw the value 

when t' was presented and another for those that saw G. The values 
of the input in each class have a conditional mean: 

where the conditional expectation (. . .)c is defined as 

and pt is the probability that a neuron had activity [ when the network 
was stimulated by f'. The expectation is over all the ff with P > 1 and 
j = 1,. . . , N, and on J/ with j different from i. In other words, this is the 
mean input to a neuron in the population that had activity [ upon the 
presentation of fl. The signal, for the binary case can be defined as 

If IS1 is significantly greater than the sum of the noises around each of 
the mean h? for the two values of f, then a threshold can be found that 
will separate correctly the two outcomes C1,G to reproduce the retrieved 
pattern S can be written in terms of the conditional probabilities as 

where the sum on t extends over the two possible values of the activity 
f/ and J runs over all n values of the stable synaptic states. 

The fluctuations of the two h7 are estimated by 

If the random variables h: are gaussian, then total noise is 

1 
R2 = $R2(G) + R2(Cz)I 

The computation of each of the current variances is complicated by 
the fact that it involves means of products like: JijJik, in which the efferent 
neuron i is the same in both synaptic efficacies. In general, the variables 
Jii and J;k are correlated. In Appendix A we show that the variances are 
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minimal when the two sets of Js are assumed independent. In that case, 
it is shown in the appendix that 

Retrieval is possible if the ratio SIR is large enough. If one requires 
that the probability of an error on any neuron tends to zero with increas- 
ing N, then the square of the signal-to-noise ratio must grow at least as 
log N (see, e.g., Weisbuch and Fogelman-Souli& 1985). 

3 The Logarithmic Constraint 

In the wide class of learning processes we consider below, there is always 
a sequence of synaptic transitions, on any given synapse, that can bring 
the synapse from any one of its stable states to any other state. The 
corresponding stochastic process is, therefore, irreducible (see, e.g., Cox 
and Miller 1965). In that case the matrix M has a single eigenvalue 1. 
Writing equation 1.1 in terms of the eigenvalues, A,, of M, one has 

where uff and vff are, respectively, the right and the left eigenvectors 
associated to eigenvalues A,. For an ergodic process, we have A1 = 
1 > X2 = AM 1 A3 2 . . An (Cox and Miller 1965). Note that the terms 
multiplying A;--' for a > 1 depend on the initial conditional distribution 
and on the eigenvectors of M, corresponding to A,. They are independent 
of p and N. 

Substituting p in equation 2.1 one finds 

where h, is the term due to the asymptotic part of the distribution pj": 

The coefficients Fa can be read by substituting equation 3.1 in equa- 
tion 2.1. They are independent of N and of p. When A2(= AM) dominates, 
that is, 

one can write for large p 
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Calculating S by substituting equation 3.2 in equation 2.2, the asymp- 
totic part h, cancels, leading to 

S = a>l C [x~(P)]P-' . C, (P) (3.3) 

where C,(P) are differences of the corresponding coefficients Fa in equa- 
tion 3.2, and P represents, schematically, their dependence on the set of 
parameters describing the learning dynamics. For fixed P, AM dominates 
and 

in which C2 and AM depend on N only via an eventual dependence of 
one of the parameters that affect the learning dynamics (e.g., coding level 
of patterns, transition probabilities, presentation rate, number of stable 
synaptic states). 

The uncorrelated part (the lower bound, see Appendix A) of the vari- 
ances of the two distributions of neuronal inputs, h, are given by equation 
(2.4). Each of the variances has two contributions: 

and 

Again, if A2 = AM dominates, then 

The dependence on 5 is contained in the functions GI, F2. For p -t oo all 
the terms that are multiplied by A;' disappear and only the asymptotic 
part survives. So the signal-to-noise ratio behaves as 

in which 

If we impose that in the limit N -, ca the ratio S2/RZ grows at least 
as logN, then we obtain a bound on p: 
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This result makes sense, of course, only if the argument of the logarithm 
is greater than unity. Or that 

NC(P) > log N (3.8) 

Setting p=l in equation 3.6, this condition is seen to be equivalent to the 
condition that the ratio of signal to noise will allow the recall of the most 
recently learned pattern (AM is strictly less than 1). 

In fact, the result 3.8 is a gross overestimate. The correlations men- 
tioned above and discussed in Appendix A can make the variances re- 
main finite as N becomes large. The increase in p, with N is all due to the 
fact that the noise decreases as N-'. Moreover, when the noise does not 
decrease with increasing N, the product NC(P) does not increase with N. 
Hence the condition 3.8 can never be satisfied. As we proceed to show 
in what follows, the escapes from the tight storage constraint on p, are 
effective also when the correlations are included. 

4 Possible Escapes 

The logarithmic constraint on the number of retrievable patterns concerns 
a very wide class of networks with dynamic synapses. However, the 
form of p,, equation 3.7, suggests possible escapes. If one allows the 
parameters, P, contained in AM to vary with the size of the network, so 
that AM 4 1, then it is possible to go beyond the logarithmic constraint. 
The corresponding variation of C('P), limits the space of variation of the 
parameters 'P. Specifically, if AM has the form 

and the dependence of P on N makes x -, 0 in the limit of large N, while 
the constraint 3.8 is respected, then 

p, - x-l. (4.2) 

As mentioned at the end of the last section, if the constraint is not satis- 
fied, there is no way to improve memory. Making AM tend toward unity 
can, at best, prolong the trace of the first imprinted pattern. But when 
the constraint is violated, there is no trace to maintain. \Fortunately, in 
the memory optimizing cases to be considered the correlati'ons contribute 
a negligible amount to the variances (see, e.g., Appendix A). 

We have considered four types of parameters P that affect the learning 
dynamics and that may depend on N: 

Speed of pattern presentation. If the number of stimuli presented 
to the network in the interval of a single transition between the 
synaptic states increases to m, the storage capacity is multiplied by 
m (Amit and Fusi 1992)., Imposing a minimal rate of presentation 
seems rather artificial so we shall look for those types of remedies 
which improve the worst case: low rate presentation (m = 1). 
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Stochastic refresh mechanism. The transition probabilities of a 
synapse for given input can be made to decrease with N. 

Coding level of the patterns. The fraction of information carrying 
bits per stimulus can be made to decrease with increasing N. 

Number of synaptic states. The number of stable states per synapse, 
n, can increase with N. 

But when p - O(x-') we have (AM)P -+ Const # 0 as x -+ 0. In that 
case one must reexamine the dominance of AM = A2 in the expansion 
equation 3.1. In fact, usually a whole set of eigenvalues A, -+ 1 and 
(A,)? + K, # 0 in this limit (see, e.g., Section 7). The part of &(<, [) 
corresponding to A1 remains distinguished from the contributions due to 
the other A, -t 1, because it is the only part that is independent of the 
first learned pattern. 

The appearance of several eigenvalues for which (A,)p + Ka # 0 
implies that sums over eigenvalues, such as in equations 3.3, 3.4, and 
3.5 separate into two parts: one part running over all the eigenvalues 
which tend to 1 and a part that includes all the lower eigenvalues and 
hence tends to zero. Since we have taken p - x- l ,  the remaining sum 
may depend on x and effectively change the factor C(P) in equation 3.7 
or 3.8, thus possibly modifying the constraint on the range of variation 
of the leaming parameters P. In at least one such case, the case studied 
in Section 7, we find that no such change is induced by the degeneracy 
of the eigenvalues in the limit. 

5 Stochastic Learning of Sparsely Coded Patterns 

The most interesting results appear in the case of 0-1 neurons, with a 
low mean fraction f of 1s and synapses with 2 stable states 0-,J+). An 
imposed stimulus can produce the following transitions at a synapse: 

If Jij = J- and the new stimulus activates the associated pair of neu- 
rons (i.e., [r=t,Y=l), then a transition J- --+ J+ occurs with probability 
9,. So upon each presentation of a new pattern the probability of 
potentiation is f q+. 

If Jil = J+ and the stimulus contains a mismatched pair of activities, 
then the transition probabilities for a depression I+ -+ J- are qr (10) 
for [f = 1, [[ = 0 and q-(01) when <; = O,</ = 1. The transition 
probabilities q-(lo), q-(01) may differ. Denoting q- = q-(10) + 
q-(01) we have that the total probability of a synaptic depression 
is f(l -f)q-. 

A pair of inactive neurons leaves the corresponding synapse un- 
changed. 
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The resulting transition matrix is 

where a = f (1 - f)q-, b = f q+. The two eigenvalues are 1 and: 

AM = 1 -f2q+ -f(l -f)4- (5.2) 
The asymptotic distribution, the left eigenvector belonging to the eigen- 
value 1, is 

where p+ = b/(a + b) is the fraction of synapses with value J+. Note that 
the Willshaw (1969) model has J+ = 1,J- = 0 q-=O. Hence, a = 0 and 
consequently p" = (1,O): all synapses become 1. 

For the present case, since 8- = 1 - A, equation 2.3 becomes 

(h)+l = u; -J-)f~$'+(l,l) +J-f (5.4) 

(h)o = (I+ - J-)f8+ (091) + J-f (5.5) 
The conditional probabilities are given by equation 3.1 as 

&+(O, 1) = $2 PXO, l)uxq+ + PC = G1 [P~+(o, 1) - P+] + Pp: 
K 

where the eigenvectors corresponding to AM are given by u~ = (p-, -p+) 
and VK = (1, -1). 

Assuming that one starts from asymptotic distribution, the conditional 
probabilities following the presentation of the oldest pattern 5' are 

Pf+(1,1)=P++p-q+, P;+(O,l)=p+(l-q-) (5.6) 
When calculating the signal, the asymptotic parts cancel and the leading 
term, is proportional to A;'. 

S = xZ1(J+ - I-)(q+p- + q-p+)f (5.7) 

Note again that for the Willshaw model p1 = p" and S=O, that is, no 
learning is possible on top of the asymptotic distribution\ 

For the calculation of the uncorrelated part of the noise, equation 2.4, 
we need (h2), which is the same as (h) with J+ replaced by 7: and J- by 
15. One finds that 

f 
R2 = jj [p+f, + p-J? - (p+J+ + p-J-)Y + o(Agl)] (5.8) 

For small f we keep only terms of leading order in f and, for large p, the 
signal-to-noise ratio is 

5.1 Extremal Cases and the Return of Optimal Storage. 

5.1.1 Lowest Coding Level. First we take the coding level f w logN/N 
(as in Willshaw 1969) keeping the transition probabilities q+ and q- fixed 
and both different from zero. From equation 5.2 we read that AM 1 - x 
(equation 4.1) with 

and, according to equation 4.2, 

In fact, f - logN/N is as low as f is allowed to become without violat- 
ing the bound (3.8). Moreover, even the above result for p, is too high. 
The reason is that when q+ and q- are fixed, the correlation term, Ap- 
pendix A, overpowers the leading uncorrelated part when p, goes above 
N/(logN)'. In other words, this network performs much worse than 
Willshaw's (1969), which for the same coding level gives p, N N2/ log2 N. 
This is a price for continual learning. 

5.1.2 Optimal Storage Recovered. The optimal performance can be re- 
cuperated if we take f - log N/N and the transition probability q- = fq+. 
Provided the bound (3.8) is not violated, according to equation 4.2, since 
now x of equation 4.1, is -- ( ~ o ~ N / N ) ~ ,  one has the optimal storage 

if q+ does not tend to zero. 
To verify that the retrieval bound, (3.8), is respected one first notes 

that in this case the part of the noise due to correlations is negligible. It is 
of magnitude pfj relative to the uncorrelated part (see, e.g., Appendix A). 
It is therefore sufficient to read C(7J) from equation 5.9 and to substitute 
it in equation 3.8. In the present case the asymptotic fractions p+ and p- 
of J+ and J-, respectively, are finite. The only strong N dependence in 
C(P) is in f and hence the constraint reduces to Nf = O(1ogN). 

5.1.3 Intermediate Cases. One could attempt to trade off some of the 
N dependence off for an N dependence of 9+, which has been assumed 
finite in the limit of large N. The constraint on C(P) implies that if 
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then 

log N 
4: = (N) 

with 6 E ,,lo, 11 (f < 1 implies that ,8 > 0 and q+ < 1 gives the upper 
bound ,O < 1). For x of equation 4.1 we have 

and hence 

The discussion in Appendix A shows that in the part of the intermediate 
regime in which 0 > 5 ,  the correlated part of the noise is negligible. 
The case @=O, that is, fixed finite codin level f, reproduces the result of 
Tsodyks (1990), with a capacity of U (  ? N). 

6 Simulations 

We have carried out extensive simulations to test the predictions of the 
theoretical estimates in the most extreme case, that of optimal storage in 
2-state synapses and 0-1 neurons. In fact, to make the test of the theory 
more stringent, we have tested separately the asymptotic behavior of 
the signal and the noise. In the simulations the parameters were set as 
follows: 

log N I+ = 1, I- =o,  f(N) =A- 3 q + = L  4-=f  (6.1) 

with fixed A = 4. The signal and the noise are estimated for each choice 
of parameters N and p in the following way: 

A sequence of Np = 500 + p random N-bit words is generated, the 
stimuli to be learned. p is the maximal age of a pattern to be tested. 
Each word is generated by assigning l's, at random, with,probability f .  
All 500+p patterns are presented consecutively to the netwolrk. Upon the 
arrival of each pattern [PI learning takes place, modifying the synaptic 
matrix according to the learning rule described at the beginning of Section 
5. Following the learning of [p (p < p < p + 500) the state of the network 
is set to the pattern of age p, si = Ep-P, that is, the stimulus to be retrieved. 
Then, with the new synaptic matrix Ji, we ca1,culate the average of the 
postsynaptic input over the foreground and the background neurons in 
order to estimate the conditional mean of equation 2.3, that is, 

Figure 1: Logarithm of signal vs. number of memories p for fixed N: (A) N = 
600, (B)  N  = 800, (C) N = 1000, (D) N = 1400. The lines are a linear fit of the 
mean signals. The slopes a l (N)  are reported in Table 1. Error bars are rms in 
measured signals. 

where the index i runs over all neurons for which tr-P = C(= 0,l); NC is 
the number of neurons with si = C(=0,1) in the pattern presented. From 
these data we compute the square of the signal as the average over all 
presentations, that is, 

And the noise R2 is calculated as half the sum of the standard deviations 
of h around (hp)~ and (hp)~. 

These results are then compared to the theoretical estimates. In par- 
ticular we have tested the dependence of S2 on N for fixed p and its 
dependence on p for fixed N. The theoretical expectations for the square 
of the signal, equation 5.7, are 



970 Daniel J. Amit and Stefano Fusi Learning in Neural Networks with Material Synapses 

where f (N) is defined in equation 6.1. With the present choice of param- 
eters 

A, = 1 - 3f (N) + 2f (N) 

 he theoretical upper bound estimate for the noise can be obtained 
from equation 5.8. One has 

If equations 6.2 and 6.3 are verified in the regime of the asymptotic 
behavior in N, then the number of storable and retrievable patterns can 
grow as N2/ log2 N. Indeed, as long as p is bounded by this value, there 
exists a threshold that separates the depolarization of neurons that should 
be active from those that should be quiescent. 

Equation 6.2 is written in the form 

yi = log S2 = al (N)p + bl (N) (6.4) 

with 

a, (N) = 2 log[l - 3f (N) + 2f (N)] (6.5) 

The four insets in Figure I present logs2 vs p for N = 600, 800, 1000, 
and 1400. The straight lines are a fit of the mean signals by equation 6.4. 
From these fits we find values for al(N) that are compared in Table 1 
to the theoretical values given by equation 6.5 for several values of N. 
The agreement represented in the table implies that in the entire range 
of values of N and of p tested in the simulations one is already in the 
asymptotic regime for the behavior in N and p. Hence the fact that in this 
region S2/R2 > logN implies, in turn, storage capacity quadratic in N. 

The behavior of S2 vs N, for the same value of A, is presented in 
Figure 2 where S2 is plotted as function of N for four different values of 
p (20,30,40, 60). The continuous line represents the theoretical estimate 
while the points are simulation results. The agreement improves with 
increasing N although, even for small N, the theoretical l&es pass through 
the errorbars. It is worth noting that in case D the nonrnonotonic behavior 
around N = 400 is captured by the theory. 

Finally the upper bound on R2 is tested in Figure 3. In particular, 
R2 is plotted as a function of p for N = 600, 800, 1000, and 1400. The 
noise tends to its asymptotic value, and is always below the straight 
dotted line which represents the upper bound (equation 6.3). The value 
of the upper bound decreases with increasing N and R~ approaches its 
asymptotic limit more slowly when N is larger. This is due to the fact that 
for large N AM is closer to 1, and the correction to asymptotic distribution 
goes to zero more slowly (see equation 6.3). 

Table 1: Testing the Asymptotic Regime.n 

N theoretical al a, from simulations 

'Comparison between theoretical a l ( N ) ,  equation 6.4, and the value measured in 
simulations. 

Figure 2: s2 vs N for several values of p: (A) p = 20, (B) p = 30, (C) p = 40, 
(D) p = 60. Dots are simulations results. The continuous line is the theoretical 
prediction (equation 6.2). Note the improvement of agreement with increas- 
ing N. 
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Figure 3: Simulation results for R~ VS. p: (A) N = 600, (B) N = 800, (C) N = 1000, 
(D) N = 1400. The horizontal lines are the theoretical upper bound (equa- 
tion 6.3). When p grows then R2 approaches exponentially its asymptotic value. 

7 Multistate Synapses and r t l  Neurons 

The second example we consider, to demonstrate the dependence of 
the performance of an autoassociative network on the number of sta- 
ble synaptic states, is a network of f 1 neurons (6 = 1, 52 = -1) and 
synapses with n stable states: 

Each pattern ,$-' is a random word of N f 1 bits chosen independently and 
with equal probability [Pr(E = 1) = Pr(5 = -1) = 1/21. Upon presentation 
of a pattern a synapse is potentiated Urn + 1 + 1 )  with probability q if 
the source <r<'=l or depressed with the same probability (rm + Jm-1) if 

= -1. If a synapse is at one of its extreme limits and is pushed on, 
its value is unchanged. So in the process of the presentation of patterns a 
synapse undergoes a random walk between two reflecting barriers. Note 
that in this model a stimulus communicates information to all N neurons 
and qN2 synapses are modified by each stimulus. 
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The stochastic transition matrix MKI is tridiagonal with q/2 along the 
two side diagonals: 1 - q along the main diagonal, except in the first and 
last positions where it is 1 - 912. Since this matrix is symmetric, its right 
and left eigenvectors are identical and hence the asymptotic distribution 
is uniform, that is 

1 
Pr" = , tll 

and hence h, = 0 due to the &l symmetry. 
The full set of eigenvalues of M is 

with a = 0,. ... n - 1- ( X o  = 1). Its second largest eigenvalue X1 = AM is 

and the corresponding eigenvector is 

7rk ' 

Vk = C cos - 
n - 1' 

where, for large n, the constant c behaves as @. The contribution 
(h)+l to the signal is 

where the index J runs over all the stable synaptic values J = L, m = 
0,. .. , n - 1 (equation 7.1). Recall that (h)-l = Substituting the 
expression for the conditional distributions one finds 

(h)+l = &' ~ ~ ~ v K v ,  [ P # J )  - P;(L - I ) ]  + ~ ( g - ' )  (7.4) 
1 K  

The difference of the two conditional distributions, following the pre- 
sentation of the oldest pattern <I, is 

This form follows from the observation that when t;tj = 1 is presented 
to the uniform asymptotic distribution it leaves the probability of all 
states invariant except the two extreme ones: The lowest state that loses 
a fraction q of its occupation, becoming (1 - q)/n and the top one which 
gains the balance and becomes (1 + q)/n. Cttfl = -1 does the opposite, 
producing the following two conditional distributions: 
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Hence, taking 2(h)+l of equation 7.4 and substituting equations 7.5 
and 7.3 the signal becomes 

where the constant C is independent of 9, n, N, p. Note that the signal 
decreases with increasing n. This is a consequence of the fact that the 
process has a uniform asymptotic distribution of values. Even after the 
presentation of a single pattern, on the background of the asymptotic 
distribution, the signal will decrease as l / n .  

The noise can be calculated using equations 3.4 and 3.5: 

In this case, due to the iz symmetry of the process, the contributions of 
the synaptic correlations to the noise vanish identically. The dependence 
on E is contained in the term 0(XL1), which vanishes as p -+ oo. Hence 

where Jm is given by equation 7.1. Substituting L one has 

which does not depend on n, because the sum grows linearly in n. 
Hence the final signal-to-noise ratio behaves like 

where K is the ratio of C2 to the part of R2 that does not depend on N. 
Hence 

Again, if 9 and n are fixed, the capacity is logarithmic. ' 
On the other hand, if 9 and n are chosen so that q/n2 -+ 0 then AM 

tends to 1 and x of equation 4.1 is 

Equation 4.2 gives 
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7.1 Extremal Case. The constraint on the allowed variation of n and 
q, equation 3.8, is equivalent to the requirement that the log in equa- 
tion 7.11 be positive. Writing the probability 9 in the form 

We must have D L 0, since 9 must lie in the interval [O,l]. Moreover, the 
constraint implies that 

and since n > 1, p < 1. Substituting n and 9 in equation 7.11 we find 

Since ,h' is restricted to the interval [0,1], the number of stable synaptic 
states cannot surpass a. If n becomes larger, the network is no longer 
a palimpsest and all memory is destroyed together. When n reaches this 
limit (p = 0) the number of retrievable memories is proportional to N 
(see, e.g., Parisi 1986). The price is that the number of synaptic states is 
not a property of the synapse, it increases with the size of the network. 

If one introduces a stochastic transition mechanism with q # 1 (P > 0) 
then it is possible to store more than rn patterns. When D varies from 
1 to 0 the process interpolates between p zi to p 2: N. 

7.2 The Role of the Other Eigenvalues. As was discussed at the end 
of Section 4, when AM -+ 1 the contribution of the other eigenvalues must 
be reexamined. Equation 7.2 for the eigenvalues implies that all n of them 
tend to 1 as n + co or q -+ 0. Nevertheless, we show in Appendix B that 
the dependence of both the signal and the noise on n and on q remains 
unchanged. 

8 Discussion 

We have tried to open a discussion of the consequences of synaptic dy- 
namics that may be taking place in a network that receives a tempo- 
rally unconstrained stream of stimuli and maintains the same neural and 
synaptic dynamics whether the network is engaged in computation or in 
learning new memories. The requirement that memory be preserved in 
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the synapses for long times has induced us to postulate that synapses 
have finite sets of states that are stable. In between such states the 
synapse is assumed to be able to vary continuously, but the analog values 
can be maintained only for short times and their main role is to allow a 
synapse, based on the neural activity in the neurons connected by it, to 
cross thresholds for transitions between neighboring stable states. 

Whether biological synapses have such ladders of stable states is a 
question of neurophysiology and biochemistry. Given recent progress in 
measuring synaptic efficacies between single pyramidal neurons (Mason 
etal. 1991), the neurophysiological test may soon be feasible. On the other 
hand, in electronic implementations of unsupervised neural networks this 
mechanism has proved very natural and effective. The stable states of a 
synapse are essentially (see, e.g., Amit et al. 1992; Badoni et al. 1992) an 
asynchronous refresh mechanism operating on some capacity associated 
with the synapse. The simplicity of implementation, the economy in 
means, and the accessibility to analysis should make this scheme rather 
attractive. 

In studying the retrievability of learned patterns only the existence of 
a potential threshold has been considered. We have ignored the possi- 
bility that for different stimuli this threshold may differ. In fact, it does, 
mostly due to fluctuations in the number of active neurons from pattern 
to pattern. We have noticed elsewhere (Amit and Brunel 1993) that this 
problem is naturally overcome by an unstructured inhibition reacting in 
proportion to the total excitatory activity. 

Another issue mentioned but not developed concerns the possible 
analog nature of the information coding in the stimuli. It has been raised 
in Section 1 in connection with the origin of the nondeterministic nature 
of the synaptic transition given the same pair of digitally coded informa- 
tion bits. In the discussion of the retrieval we have considered only the 
digital representation of the stimuli that had been learned. If in fact the 
fluctuating nature of the transition probabilities is related to the fluctu- 
ations of neuronal activity variables, such as spike rates, one must test 
also the retrieval of patterns that have fluctuating variables. We have not 
done this, either theoretically or in the simulations, but we believe that 
the modification should be minor. The reason is that for the digital cod- 
ing to make sense it must represent approximately thewalog variables. 
In other words, a neuron with a 0 digital code will have low frequency 
and one with a digital code of 1 will have high frequency. Thus the 
difference between the presentation of the analog vs. the digital pattern 
for retrieval can be considered as noise on the incoming stimulus to be 
retrieved. 

We have emphasized the issue of the palimpsest behavior of the net- 
works. In the present context this type of behavior is quite natural. 
One may wonder whether experience indicates that brain functions as 
a palimpsest. We are not familiar with any direct evidence that this is 
the case, yet the issue is not moot. First, if the storage capacity of any 
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cortical module is of relevance, clearly the behavior of that module near 
capacity becomes important. At that point it is pertinent to raise the 
question of whether it behaves as a palimpsest or not. Experience does 
not produce the impression that old memories are replaced by new ones. 
In fact, often one has the opposite impression, that is, that old memories 
never die. Yet it should be kept in mind that the theoretical treatment 
presented here has dealt with strings of stimuli that are uncorrelated. 
The repetition of some subclasses of stimuli in the process of learning 
may create privileged memories. How this is included in a theoretical 
framework we leave as an open question. 

What seems important to realize in this context is that it is quite 
possible that a module will receive a very rich stream of stimuli. Since 
there is no dynamic distinction between those that should be learned 
and those that are transient, all make some modification of the synaptic 
structure. It may be the case that most of what enters the module is 
noise and hence that what is learned is learned on the background of an 
asymptotic distribution of synaptic values. This is the deeper sense of 
palimpsest behavior in our context. 

This connects with another question: what is the dynamics for learn- 
ing correlations in the input stream? Such correlation may be of two 
types: there may be correlations in the spatial activity distribution of 
patterns in the afferent sequence. Or it may be that the system manages 
to learn temporal correlations in the sequence, as is implied by the ex- 
periments of Miyashita (1988; Griniasty et al. 1992). In both cases there is 
a need for an extension of the techniques presented here. It appears that 
in some cases such extensions are not unsurmountable (Brunel 1993). 

Finally, one may be struck by the discrepancy between the tight stor- 
age bound that we find for networks with fixed parameters and the re- 
sults on the capacity of networks with f 1 synapses of Amaldi and Nico- 
lis (1989), Gutfreund and Stein (1990), and Krauth and Mezard (1989), 
which give a capacity linear in the number of neurons. Our conclusion 
is that there is no local learning algorithm that can lead to those ma- 
trices. Nonlocality is invoked in a double sense; it is spatial as well as 
temporal-spatial, because one needs more than the two activities im- 
posed by the stimulus on the pair of neurons connected by the synapse 
to be modified and temporal, because one must know all the stimuli 
simultaneously while deciding if a modification is acceptable or not. 
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Appendix A 

The full expression for the variance of the neuronal input about its mean 
in one of the classes is 

2 

R: = ((hi - (hi)<)'), = (L 13 xJijIikEjt;) - (& ~ l i j ~ )  
N2 j#i k#i .f i # ~  

The first term on the last line is the term that ignores correlations between 
the distributions of Jij and Jik. The second one, which is of order 1 as 
N -t ca, is due to the correlations. 

At this stage we can conclude that the uncorrelated contribution to the 
variance, the first term in equation A.1, gives a lower bound on the total. 
The reason is that since in the large N limit the second term dominates 
the variance, it must necessarily be positive. Otherwise the total variance 
may become negative. Hence the second term can only increase the total 
variance. 

To calculate the first term in the second square brackets requires the 
conditional probability distribution p(JijJik I t&&), where t is the value of 

common to both synapses. Thus we need the difference 

To obtain the first term one has to use an equation of the type of equa- 
tion 1.1, for the conditional probability that a pair of.,synapses with a 
common neuron has a given pair of values, ~onditioned~on the values of 
the three neurons-i (the common one), j and k, in upon the presenta- 
tion of pattern number 1. The distribution pUlJ2 I t&[2), for fixed [, has 
four values, since each of the two Js can have two values. Hence, the 
transition matrix, corresponding to M in equation 1.1, is a 4 x 4 matrix. 

We have computed this matrix as well as the difference with the ma- 
trix driving the two synaptic values in the uncorrelated case for the model 
described in Section 5. The latter matrix is simply the outer product of the 
two 2 x 2 matrices of equation 5;l. We skip the details, which are straight- 
forward but tedious, and summarize the results: The difference between 
the correlated transition matrix and the uncorrelated one is again a 4 x 4 
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matrix. For small values of f, 9-, and q+ its elements are all dominated 
by the largest of the terms: 

When ,the transition matrix is raised to the power p, the contribution to 
the difference S@' c-be estimated by 

where 6M is the difference of the transition matrices in the correlated and 
the uncorrelated cases and Mp-I is the uncorrelated transition matrix 
iterated p - 1 times. Both'terms in the correlated contribution to the 
variance are proportional to f ,  since in the averages they contain two 
independent sums over variables C. Hence the estimate of the correlated 
contribution isfd multiplied by the largest of the three terms in A.3. On 
the other hand, the uncorrelated part of the variance is dominated by 
f /N for small f and large N (see, e.g., equation 5.8). 

Example 1. if q- and 9+ are fixed, as N becomes large, the leading 
term in the correlated part of the variance comes from the term linear in 
f and the uncorrelated part will dominate as long as 

Hence, in particular, when f logN/N and p = f-I, the correlated term 
takes over, leading to a violation of the retrieval criterion. 

Example 2. The intermediate cases discussed in Section 5. Taking 
q- = fq+ all three terms in A.3 become of the same order: f3q:. Multi- 
plying by pf and comparing to f/N gives for the leading terms in the 
variance 

where the second term in the parentheses is due to the correlations. With 
the notation of Section 5, that is, 

the correlation term becomes 

For this term to become negligible compared to 1, we must have P > 113. 
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Appendix B 

Here we verify that the result (7.12) remains unchanged when one in- 
cludes the contribution of all the eigenvalues in the calculation of the 
signal-to-noise ratio in the limit n -, oo and q -, 0 when N -, oo. 

The eigenvalues of M are given by equation 7.12 as 

with a: = 0,. . . , n - 1, and hence all go to 1 in the limit we are discussing. 
Denoting by S, the contribution to the signal from the eigenvalue A,: 

The corresponding eigenvectors are, for n large 

Hence, for a: even, S,=O, and for a: odd, with Jm given by equation 7.1, 

89 "-' narn 
S, = A:--'-- Jm cos (-) = A*-'- 

n - 1  
8q 1' (1 - 2x) cos(nar) dx (B.l) 

n2 m=O n o 

when n is large. Carrying out the integration one has 

for a: an odd integer and S,=O otherwise. 
The total signal is 

32 

odd a 

The sum in the above expression for S neither divergesoor vanishes as 
n -+ oo. It cannot diverge since all the eigenvalues are less than 1, so 
the series in a: converges to a finite value. It cannot vanish because, 
when p N X-I as in equation 7.11, there is at least one XP, that tends to 
a constant different from zero. Furthermore, its sum cannot vanish by 
a cancellation, since the number of positive terms is greater (q < 1) or 
equal (9 = 1) to the number of negative ones and for each negative term 
there is a positive one with a greater absolute value. 

As a consequence the inclusion of all the eigenvalues leaves the de- 
pendence of the signal on the learning parameters unchanged in the limit 
of large n and small 9, it has the form equation 7.7. 

The noise around +1 is equal to the noise around -1. In the limit 
n -, oo and q -t 0, it can be written as 

The second term on the right hand side of the first equality is the sub- 
traction of (hf}; in equation 2.4. The sum of the two conditional distri- 
butions pl, given by equation 7.6, gives a uniform vector proportional to 
the asymptotic distribution. So the vector &(l, 1) + pk(1, -1) is invariant 
when multiplied by matrix M and hence 

So the asymptotic behavior of the noise, as a function of n and 9, preserves 
its form in the case of a single dominant eigenvalue, equation 7.8. 
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