4,206 research outputs found

    The Recognition Heuristic: A Review of Theory and Tests

    Get PDF
    The recognition heuristic is a prime example of how, by exploiting a match between mind and environment, a simple mental strategy can lead to efficient decision making. The proposal of the heuristic initiated a debate about the processes underlying the use of recognition in decision making. We review research addressing four key aspects of the recognition heuristic: (a) that recognition is often an ecologically valid cue; (b) that people often follow recognition when making inferences; (c) that recognition supersedes further cue knowledge; (d) that its use can produce the less-is-more effect – the phenomenon that lesser states of recognition knowledge can lead to more accurate inferences than more complete states. After we contrast the recognition heuristic to other related concepts, including availability and fluency, we carve out, from the existing findings, some boundary conditions of the use of the recognition heuristic as well as key questions for future research. Moreover, we summarize developments concerning the connection of the recognition heuristic with memory models. We suggest that the recognition heuristic is used adaptively and that, compared to other cues, recognition seems to have a special status in decision making. Finally, we discuss how systematic ignorance is exploited in other cognitive mechanisms (e.g., estimation and preference)

    The economic implications of HLA matching in cadaveric renal transplantation.

    Get PDF
    Abstract Background: The potential economic effects of the allocation of cadaveric kidneys on the basis of tissue-matching criteria are controversial. We analyzed the economic costs associated with the transplantation of cadaveric kidneys with various numbers of HLA mismatches and examined the potential economic benefits of a local, as compared with a national, system designed to minimize HLA mismatches between donor and recipient in first cadaveric renal transplantations. Methods: All data were supplied by the U.S. Renal Data System. Data on all payments made by Medicare from 1991 through 1997 for the care of recipients of a first cadaveric renal transplant were analyzed according to the number of HLA-A, B, and DR mismatches between donor and recipient and the duration of cold ischemia before transplantation. Results: Average Medicare payments for renal-transplant recipients in the three years after transplantation increased from 60,436perpatientforfullyHLA−matchedkidneys(thosewithnoHLA−A,B,orDRmismatches)to60,436 per patient for fully HLA-matched kidneys (those with no HLA-A, B, or DR mismatches) to 80,807 for kidneys with six HLA mismatches between donor and recipient, a difference of 34 percent (P\u3c0.001). By three years after transplantation, the average Medicare payments were 64,119fortransplantationsofkidneyswithlessthan12hoursofcold−ischemiatimeand64,119 for transplantations of kidneys with less than 12 hours of cold-ischemia time and 74,997 for those with more than 36 hours (P\u3c0.001). In simulations, the assignment of cadaveric kidneys to recipients by a method that minimized HLA mismatching within a local geographic area (i.e., within one of the approximately 50 organ-procurement organizations, which cover widely varying geographic areas) produced the largest cost savings ($4,290 per patient over a period of three years) and the largest improvements in the graft-survival rate (2.3 percent) when the potential costs of longer cold-ischemia time were considered. Conclusions: Transplantation of better-matched cadaveric kidneys could have substantial economic advantages. In our simulations, HLA-based allocation of kidneys at the local level produced the largest estimated cost savings, when the duration of cold ischemia was taken into account. No additional savings were estimated to result from a national allocation program, because the additional costs of longer cold-ischemia time were greater than the advantages of optimizing HLA matching

    Effect of Conditioning Regimen Intensity on Acute Myeloid Leukemia Outcomes after Umbilical Cord Blood Transplantation

    Get PDF
    Reduced-intensity conditioning (RIC) umbilical cord blood (UCB) transplantation is increasingly used in hematopoietic stem cell transplantation (HCT) for older and medically unfit patients. Data on the efficacy of HCT after RIC relative to myeloablative conditioning (MAC) are limited. We compared the outcomes of acute myeloid leukemia (AML) patients >18 yrs who received UCB grafts after either RIC or MAC. One hundred nineteen adult patients with AML in complete remission (CR) underwent an UCB transplant after RIC (n =74, 62%) or MAC (n = 45, 38%) between January 2001 and December 2009. Conditioning was either reduced intensity and consisted of cyclophosphamide 50 mg/kg, fludarabine 200 mg/m2, and total-body irradiation (TBI) 200 cGy or myelablative and consisted for cyclophosphamide 120 mg/kg, fludarabine 75 mg/m2, and TBI 1200-1320 cGy. All patients received cyclosporine (day −3 to day +180) and mycophenolate mofetil (day −3 to day +45) post-HCT immunosuppression and hematopoietic growth factor. Use of RIC was reserved for patients >45 years (n = 66, 89%) or preexisting severe comorbidities (n = 8, 11%). The 2 groups were similar except for preceding myelodysplastic syndrome (RIC = 28% versus MAC = 4%, P < .01) and age that was dictated by the treatment protocols (median, RIC = 55 years versus MAC = 33years; P < .01). The incidence of neutrophil recovery at day +42 was higher with RIC (94% versus MAC = 82%, P < .1), whereas platelet recovery at the sixth month was similar (RIC = 68% versus MAC = 67%, P = .30). Incidence of grade II-IV acute graft-versus-host disease (aGVHD) (RIC = 47% versus MAC = 67%, P < .01) was decreased with similar incidence of chronic GVHD (cGVHD) (RIC = 30% versus MAC = 34%, P = .43). Median follow-up for survivors was 3.8 and 4.5 years for RIC and MAC, respectively (P = .4). Using RIC, 3-year leukemia-free survival (LFS) was decreased (31% versus MAC = 55%, P = .02) and 3-year relapse incidence was increased (43% versus MAC = 9%, P < .01). Two-year transplant-related mortality (TRM) was similar (RIC = 19% versus MAC = 27%; P = .55). In multivariate analysis, RIC recipients and those in CR2 with CR1 duration <1 year had higher risk of relapse and poorer LFS with no independent predictors of TRM. UCB with RIC extends the use of allogeneic HCT for older and frail patients without excessive TRM with greater benefit for patients in CR1 and CR2 with longer CR1

    Smartphone-based, rapid, wide-field fundus photography for diagnosis of pediatric retinal diseases

    Get PDF
    PurposeAn important, unmet clinical need is for cost-effective, reliable, easy-to-use, and portable retinal photography to evaluate preventable causes of vision loss in children. This study presents the feasibility of a novel smartphone-based retinal imaging device tailored to imaging the pediatric fundus.MethodsSeveral modifications for children were made to our previous device, including a child-friendly 3D printed housing of animals, attention-grabbing targets, enhanced image stitching, and video-recording capabilities. Retinal photographs were obtained in children undergoing routine dilated eye examination. Experienced masked retina-specialist graders determined photograph quality and made diagnoses based on the images, which were compared to the treating clinician's diagnosis.ResultsDilated fundus photographs were acquired in 43 patients with a mean age of 6.7 years. The diagnoses included retinoblastoma, Coats' disease, commotio retinae, and optic nerve hypoplasia, among others. Mean time to acquire five standard photographs totaling 90-degree field of vision was 2.3 Âą 1.1 minutes. Patients rated their experience of image acquisition favorably, with a Likert score of 4.6 Âą 0.8 out of 5. There was 96% agreement between image-based diagnosis and the treating clinician's diagnosis.ConclusionsWe report a handheld smartphone-based device with modifications tailored for wide-field fundus photography in pediatric patients that can rapidly acquire fundus photos while being well-tolerated.Translational relevanceAdvances in handheld smartphone-based fundus photography devices decrease the technical barrier for image acquisition in children and may potentially increase access to ophthalmic care in communities with limited resources

    Investigating Coral Bleaching in a Changing Climate: Our State of Understanding and Opportunities to Push the Field Forward

    Get PDF
    [First Paragraph] Coral reefs throughout the world are facing the consequences of large-scale changes in Earth’s climate. In particular, ocean warming is leading to frequent coral bleaching, which is threatening the long-term stability of coral reefs. Coral bleaching is a stress response that results in the disassociation of the mutualistic symbioses (i.e., dysbiosis) between corals and their endosymbiotic algae (Symbiodinium spp.). In the past two decades, there have been four substantial bleaching events, which have affected large geographic areas across the globe, including the worst recorded bleaching event on the Great Barrier Reef in 2016 (Berkelmans et al. 2004; Eakin et al. 2010; Stella et al. 2016). These large-scale bleaching events, in combination with many local-scale stressors, have contributed substantially to global declines in coral populations. In addition, bleaching may lead to compromised coral immunity, possibly resulting in additional mortality by a range of post-bleaching diseases (Maynard et al. 2015, Randall et al. 2014). Given their link to patterns of global-climate change and projections of increased warming in the coming decades, mass coral bleaching events are a key concern. In addition, current climate projections estimate that global bleaching is expected to occur annually by late this century, with more than 90% of reefs facing long-term degradation (Frieler et al. 2012). Furthermore, in locations such as the Caribbean, frequent thermal anomalies and consecutive annual bleaching events are expected to be common in less than 25 years (van Hooidonk et al. 2015). In fact, large-scale bleaching two years in a row was documented for the first time in 2014-2015 in Hawaii and in the Florida Keys. However, not all corals (and other symbiotic cnidarians) are equally susceptible to thermal stress, and some corals have been shown to recover from bleaching more quickly than others. Likewise, not all reefs are equally susceptible, and depending on local conditions, susceptibility can vary from one event to the next. Such variability in resilience could be a cornerstone to reef persistence over the coming century. However, the research needed to test this hypothesis remains to be performed

    Correlation between cribriform/intraductal prostatic adenocarcinoma and percent Gleason pattern 4 to a 22‐gene genomic classifier

    Full text link
    BackgroundThe Decipher test measures expression of 22 RNA biomarkers associated with aggressive prostate cancer used to improve risk stratification of patients to help guide management. To date, Decipher’s genomic classification has not been extensively correlated with specific histologic growth patterns in prostatic adenocarcinoma. With a growing understanding of the clinical aggressiveness associated with cribriform growth pattern (CF), intraductal carcinoma (IDC), and percent Gleason pattern 4 (G4%), we sought to determine if their presence was associated with an increased genomic risk as measured by the Decipher assay.DesignClinical use of the Decipher assay was performed on the highest Gleason score (GS) tumor nodule of prostatectomy specimens from a prospective cohort of 48 patients, with GS varying from 7 through 9 to help guide clinical risk stratification. The tumors were reviewed for CF, IDC, and G4%, which were then compared to the Decipher score (0‐1) and risk stratification (high vs not high).ResultsThe presence of CF/IDC was significantly associated with Decipher risk score (P = .007), with a high‐risk Decipher score in 22% vs 56% of patients without or with CF/IDC. On binary logistic regression analysis, G4% (odds ratio [OR] 1.04 per percent increase [95% confidence interval [CI], 1.02‐1.06]; P = .0004) and CF predominant (OR, 9.60 [95%CI, 1.48‐62.16]; P = .02) were significantly associated with a high‐risk GC score. IDC did not reach significance (OR, 1.92 [95%CI, 0.65‐5.67]; P = .24).ConclusionsOur findings add to an expanding knowledge base that supports G4% and CF/IDC as molecularly unique and clinically relevant features in prostatic adenocarcinoma. These histologic features should be standardly reported as they are associated with more aggressive prostate cancer. Future work should determine the independent information of these histologic findings that are relative to genomic assessment on long‐term outcomes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153011/1/pros23926.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153011/2/pros23926_am.pd

    Observations of Binary Stars with the Differential Speckle Survey Instrument. VII. Measures from 2010 September to 2012 February at the WIYN Telescope

    Get PDF
    We report on speckle observations of binary stars carried out at the WIYN Telescope over the period from September 2010 through February 2012, providing relative astrometry for 2521 observations of 883 objects, 856 of which are double stars and 27 of which are triples. The separations measured span a range of 0.01 to 1.75 arc seconds. Wavelengths of 562 nm, 692 nm, and 880 nm were used, and differential photometry at one or more of these wavelengths is presented in most cases. Sixty-six components were resolved for the first time. We also estimate detection limits at 0.2 and 1.0 arc seconds for high-quality observations in cases where no companion was seen, a total of 176 additional objects. Detection limits vary based on observing conditions and signal-to-noise ratio, but are approximately 4 magnitudes at 0.2 arc seconds and 6 magnitudes at 1.0 arc seconds on average. Analyzing the measurement precision of the data set, we find that the individual separations obtained have linear measurement uncertainties of approximately 2 mas, and photometry is uncertain to approximately 0.1 magnitudes in general. This work provides fundamental, well-calibrated data for future orbit and mass determinations, and we present three first orbits and total mass estimates of nearby K-dwarf systems as examples of this potential

    Synergistic effects of diachronous surface uplift and global climate change on the isotopic composition of meteoric waters: implications on paleoelevation estimates across the European Alps

    Get PDF
    Stable isotope paleoaltimetry is widely used to infer past elevations of orogens due to the robust systematic inverse relationships between elevation and oxygen (δ18O) and hydrogen (δD) isotopic composition of meteoric waters recorded in geologic archives, such as paleosol carbonates or hydrous silicates. This δ18O-elevation relationship (or isotopic lapse rate) is commonly attributed to the preferential rainout of heavy water isotopologues from air masses ascending over topography. However, numerous non-linear climatic processes, such as surface recycling, vapor mixing, variability in moisture source, and precipitation dynamics, can also influence the isotopic lapse rate and thus complicate stable isotope paleoaltimetry estimates. This highlights the need for a better quantitative understanding of topographic and regional climatic effects on the isotopic composition of ancient waters. Through topographic sensitivity experiments, Boateng et al. (2023) suggested plausible changes in isotopic lapse rates across the Alps in response to different diachronous surface uplift scenarios and validated that the expected isotopic signal difference due to elevation changes is significant enough to be reflected in geologic archives. Recent paleoelevation reconstructions across the Alps estimate the mean elevation of >4000 m in the Central Alps during the Middle Miocene (Krsnik et al., 2021). These high elevation estimates have been attributed to the complicated transition from pre- to mid-Miocene Central Alps with a diverse landscape and a complex topography, mainly driven by the rapid exhumation of deep-seated core complexes, followed by a rearrangement of the drainage system. However, the paleoelevation estimate is based on the assumptions that the isotopic lapse rate (1) is similar to the modern lapse rate (~2.0 ‰/km), which is lower than the global average, (2) did not change during the deposition of the paleoaltimetry proxies compared to the present day, and (3) remained constant across the entire Alps. Here, we use a high-resolution isotope-tracking ECHAM5-wiso General Circulation Model to simulate the Middle Miocene climate and δ18Op responses to different surface uplift scenarios of the Alps. More specifically, we performed topographic sensitivity experiments by varying the height of the Western/Central Alps and Eastern Alps under two atmospheric CO2 concentration scenarios for Middle Miocene paleoenvironmental conditions. The simulated δ18Op values are consistent with the proxy reconstructions across the low- and high-elevation sites in the Alps. The topographic scenarios indicated δ18Op values differences of up to -10 ‰ between the low- and high-elevation sites, primarily due to changes in orographic precipitation and local near-surface temperature. Even though the differences across the low-elevation sites showed minor changes compared to the present-day climate, the high-elevation sites indicated significant changes mainly due to differences in moisture transport and moisture redistribution. These changes resulted in different isotopic lapse rates across the different transects around the Alps, contradicting the assumption of a regionally similar isotopic lapse rate. Using the simulated Middle Miocene isotopic lapse rates with the reconstructed Δδ18Op signal between the low-elevation Northern Alpine Foreland Basin and high-elevation Simplon fault gouge reveals an overestimation of paleoelevation estimates by 2 km when compared to the constant isotopic lapse rate of -2.0 ‰/km across the Alps. These uncertainty estimates are an improvement of the previous paleoelevation reconstruction across the Alps and support the integration of paleoaltimetry and paleoclimate modelling to reconstruct past surface elevations accurately

    The Alps Paleoelevation and Paleoclimate Experiment: Reconstructing Eastward Propagation of Surface Uplift in the ALps (REAL)

    Get PDF
    Geological observations, geodynamic models, and seismic studies suggest Neogene eastward propagating surface uplift of the European Alps. Whereas 4DMB Phase I project APE focused on reconstructing surface uplift of the Central Alps, 4DMB Phase II project REAL aims at testing the predicted west-to-east surface uplift of the Alps by combining stable isotope paleoaltimetry and paleoclimate modeling. Stable isotope paleoaltimetry is based on the inverse relationship between elevation and the stable isotopic composition of meteoric water and provides a tool to reconstruct the elevation of mountain belts in the geological past. First, REAL explores applications of the δ-δ method (see Poster Phase I APE), which requires that various recorders of past rainfall are available in the rock record: soil carbonates from low-elevation (foreland) basins and hydrous minerals from high-elevation fault gouges/shear zones. Paleoelevation estimates are obtained by contrasting time-equivalent low- and high-elevation proxy data sets, provided that the isotopic composition of the fluids during mineral formation is estimated accurately. Whereas formation temperatures of fault gouge minerals (such as illite and syntectonic micas) can be readily estimated, we apply clumped isotope paleothermometry to provide robust estimates of meteoric water δ18O from the low-elevation foreland basin carbonate record. Second, meteoric water δ18O values are not only sensitive to local elevation, but also to the complex climatic changes resulting from different paleoenvironmental boundary conditions and regional topographic configuration. To isolate the contribution of each of these components δ-δ stable isotope paleoaltimetry is applied in combination with ECHAM5-wiso paleoclimate simulations for a number of topographic scenarios of diachronous surface uplift. This unique combination allows for the removal of climate change effects on the stable isotope data, and therefore improves the accuracy of paleoelevation reconstructions. Results from our ongoing Phase II project (spring 2021 - spring 2024): 1. Reveal that diachronous surface uplift would produce patterns of climate, δ18O in precipitation values, and isotopic lapse rates that are distinctly different from those of today and those produced by bulk surface uplift scenarios. Importantly, this signal would be detectable in stable isotope paleoaltimetry results (Boateng et al., in revision). 2. Present a Miocene (23–13 Ma) continental paleotemperature record from the northern Mediterranean region (Digne-Valensole basin, SE France), which indicates near-constant temperatures from 23.0-18.8 Ma, followed by a highly variable and warm climate during the Middle Miocene and rapid cooling after 14 Ma (Ballian et al., 2023). 3. Together with new and existing paleotemperature records, preliminary results of the δ-δ method show for the first time that (a) the Central Alps were already high during the Early Miocene and (b) the Eastern Alps were appreciably lower than the Central Alps during the Middle Miocene (Ballian et al., 2022)
    • …
    corecore