59 research outputs found

    Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus

    Get PDF
    Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link

    Pluralism of Competition Policy Paradigms and the Call for Regulatory Diversity

    Full text link

    Concerns When Feeding Food Waste to Livestock

    No full text

    Organohalogen and Organophosphorus Pesticides in Mixed Feed Rations: Findings from FDA’s Domestic Surveillance During Fiscal Years 1989-1994

    Full text link
    Abstract During Fiscal Years 1989–1994, the U.S. Food and Drug Administration (FDA) collected and analyzed 545 domestic surveillance samples of mixed feed rations (172 for cattle, 125 for poultry, 83 for swine, 61 for pets, 56 for fish, and 48 miscellaneous).All samples were analyzed by gas-liquid chromatography for organohalogen and organophosphorus pesticides. Of the 545 samples, 88 (16.1%) did not contain detectable pesticide residues. In the 457 samples with detectable pesticide levels, 804 residues (654 quantitable and 150 trace) were found. None of these 804 residues exceeded regulatory guidance. Malathion, chlorpyrifos-methyl, diazinon, chlorpyri fos, and pirimiphos-methyl were the most commonly detectedpesticides. These 5 organophosphorus pesticides accounted for 93.4% of all pesticide residues detected (malathion, 52.9%; chlorpyrifos-methyl,25.2%; diazinon, 7.7%; chlor pyrifos, 4.9%; and pirimiphos-methyl, 2.7%).Their median values in samples containing quantitable levels ranged from 0.014 to 0.098 ppm. The most commonly detected organohalogen compounds were methoxychlor, DDE, PCB, dieldrin, pentachlo- ronitrobenzene, and lindane. These 6 compounds combined accounted foronly 4.1 % of all residues detected. FDA is continuing its pesticide surveillance of feeds tohelpensure animal safety and prevent violative residues in food derived from animals.</jats:p
    corecore