29 research outputs found

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10[superscript −11] mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.United States. Department of Energy (DE-FG02-97ER41020)United States. Department of Energy (DE-FG02-94ER40818)United States. Department of Energy (DE-SC0004036)United States. Department of Energy (DE-FG02-97ER41041)United States. Department of Energy (DE-FG02-97ER41033

    Kassiopeia: A Modern, Extensible C++ Particle Tracking Package

    Full text link
    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease of use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occuring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopei

    Focal-plane detector system for the KATRIN experiment

    Get PDF
    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.Comment: 28 pages. Two figures revised for clarity. Final version published in Nucl. Inst. Meth.

    Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes

    No full text
    1. Stream communities are structured by factors acting over multiple spatial and temporal scales. Identifying what factors are driving spatial patterns in stream communities is a central aim of ecology. 2. Here we used two large European data sets of fish, invertebrates, macrophytes, benthic diatoms and environmental data in two stream groups (lowland and mountain) to determine the importance of variables at different spatial scales (geographical, regional, local) on community structure. 3. Both geographical position and ecoregion were selected first in canonical correspondence analysis (CCA), clearly showing the broad spatial gradients covered in the data set. Secondary predictors (after accounting for spatial and/or ecoregion effects) were similar between stream groups and among the four organism groups. In particular, conductivity and N concentration were strong predictors reflecting catchment land use. 4. Using partial CCA, we assessed the individual importance of the three spatial scales on the community structure of the four organism groups in the two stream groups. The majority of among-site variability (22–29%) was accounted for by local scale variables (e.g. water chemistry and substratum type), with regional and spatial variables accounting 11–13% and 5–6%, respectively. Our findings indicate that the four organism groups are responding similarly to the different levels of spatial scale, implying much redundancy which should be consider when implementing studies of bioassessment

    Indicators of ecological change: comparison of the early response of four organism groups to stress gradients

    No full text
    A central goal in monitoring and assessment programs is to detect change early before costly or irreversible damage occurs. To design robust early-warning monitoring programs requires knowledge of indicator response to stress as well as the uncertainty associated with the indicator(s) selected. Using a dataset consisting of four organism groups (fish, macrophytes, benthic diatoms and macroinvertebrates) and catchment, riparian and in-stream physico-chemical variables from 77 mountain and 85 lowland streams we determined the relationships between indicator response and complex environmental gradients. The upper (>75th percentile) and lower (<25th percentiles) tails of principal component (PC) gradients were used to study the early response of the four organism groups to stress. An organism/metric was considered as an early warning indicator if the response to the short gradients was more robust (higher R2 values, steeper slope and lower error) than the null model (organism response to the full PC gradient). For mountain streams, both fish and macrophyte CA scores were shown to exhibit an early warning response to the upper tail of the 1st PC gradient when compared to the null model. Five of the eight metrics showed better response to the upper tail of the 2nd PC gradient compared to the null model, while only one metric (macrophyte CA scores) showed improvement when compared to the lower tail of the 2nd PC gradient. For lowland streams all four organism-groups showed better response (CA scores) to the upper tail of the PC gradient when compared to the null model. Only one metric (fish CA scores) regressed against the lower tail of the 2nd PC gradient was found to be more robust than the PC2 null model. These findings indicate that the nonlinear relationships of organism/metric response to stress can be used to select potentially robust early warning indicators for monitoring and assessmen
    corecore