1,547 research outputs found

    Normal stresses in semiflexible polymer hydrogels

    Get PDF
    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As recently shown, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semi-flexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.Comment: 12 pages, 8 figure

    Experimental phage therapy of burn wound infection : difficult first steps

    Get PDF
    Antibiotic resistance has become a major public health problem and the antibiotics pipeline is running dry. Bacteriophages (phages) may offer an ‘innovative’ means of infection treatment, which can be combined or alternated with antibiotic therapy and may enhance our abilities to treat bacterial infections successfully. Today, in the Queen Astrid Military Hospital, phage therapy is increasingly considered as part of a salvage therapy for patients in therapeutic dead end, particularly those with multidrug resistant infections. We describe the application of a well-defined and quality controlled phage cocktail, active against Pseudomonas aeruginosa and Staphylococcus aureus, on colonized burn wounds within a modest clinical trial (nine patients, 10 applications), which was approved by a leading Belgian Medical Ethical Committee. No adverse events, clinical abnormalities or changes in laboratory test results that could be related to the application of phages were observed. Unfortunately, this very prudent ‘clinical trial’ did not allow for an adequate evaluation of the efficacy of the phage cocktail. Nevertheless, this first ‘baby step’ revealed several pitfalls and lessons for future experimental phage therapy and helped overcome the psychological hurdles that existed to the use of viruses in the treatment of patients in our burn unit

    Stability of bacteriophages in burn wound care products

    Get PDF
    Bacteriophages could be used along with burn wound care products to enhance antimicrobial pressure during treatment. However, some of the components of the topical antimicrobials that are traditionally used for the prevention and treatment of burn wound infection might affect the activity of phages. Therefore, it is imperative to determine the counteraction of therapeutic phage preparations by burn wound care products before application in patients. Five phages, representatives of two morphological families (Myoviridae and Podoviridae) and active against 3 common bacterial burn wound pathogens (Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus) were tested against 13 different products commonly used in the treatment of burn wounds. The inactivation of the phages was quite variable for different phages and different products. Majority of the anti-infective products affected phage activity negatively either immediately or in the course of time, although impact was not always significant. Products with high acidity had the most adverse effect on phages. Our findings demonstrate that during combined treatment the choice of phages and wound care products must be carefully defined in advance

    Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii

    Get PDF
    Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections

    Quantitation of Pseudomonas aeruginosa in wound biopsy samples: from bacterial culture to rapid `real-time' polymerase chain reaction

    Get PDF
    INTRODUCTION: Early diagnosis of wound colonisation or prediction of wound sepsis provides an opportunity for therapeutic intervention. There is need for qualitative and quantitative tests that are more rapid than bacterial culture. Pseudomonas aeruginosa results in high morbidity and mortality rates, is inherently resistant to common antibiotics, and is increasingly being isolated as a nosocomial pathogen. We developed three PCR-based methods to detect and quantify P aeruginosa in wound biopsy samples: conventional PCR, enzyme-linked immunosorbent assay (ELISA)-PCR, and RTD-PCR with rapid thermal cycling (LightCycler(™) technology), all based on the amplification of the outer membrane lipoprotein gene oprL. We compared the efficacy of these methods to bacterial culture by quantitatively measuring levels of P aeruginosa in serial dilutions, in reconstituted skin samples and 21 burn wound biopsy samples. MATERIALS AND METHODS: Serial 10-fold dilutions were made from an overnight P aeruginosa culture and plated out onto Luria-Bertani and cetrimide agar plates. The agar plates were incubated overnight at 37°C, and the colonies were counted in order to estimate the number of CFU per dilution tube. A sample was taken from each dilution tube as a template for the three PCR-based methods. Serial P aeruginosa dilutions (see above) were added to uninfected cadaveric skin. The reconstituted biopsy samples were homogenized using a tissue tearer and DNA was extracted using XTRAX DNA buffer. The DNA was resuspended in distilled water. A sample was taken as a template for the PCR-based methods. Twenty-one burn wound biopsy samples were taken from nine patients with suspected P aeruginosa burn wound infection. The biopsy samples were longitudinally divided into two pieces. From one piece, DNA was extracted (using XTRAX DNA buffer) and used as a template for PCR-based techniques (see above). The other piece was homogenized, in physiological water, using a tissue tearer. Serial 10-fold dilutions of the suspension were spread on Luria-Bertani and cetrimide agar plates. Colony counts were performed after overnight incubation at 37°C. The PCR mixture contained sterile distilled water, PCR buffer, deoxynucleotide mixture or digoxigenin labelling mix, MgCl(2), diluted template, primers PAL1 and PAL2, and AmpliTaQ DNA polymerase. The amplification was performed in a GeneAmp(®) PCR System 2400. An aliquot of the reaction mixture was put on an agarose gel for electrophoresis and visualisation of the PCR product. An image of the gel was made using a digital camera. Image analysis software was used to calculate the band mass of the experimental bands. An aliquot of the digoxigenin labelling reaction was denatured and then hybridized with the biotinylated capture probe PrL. Some of the resultant solution was transferred to a well of a streptavidin-coated microtitre plate (MTP) and incubated for 3 h at 45°C. The solution was discarded. Peroxidase conjugated antidigoxigenin was added and the MTP was incubated for 30 min at 37°C. The solution was discarded and ABTS substrate was added. The MTP was incubated for 30 min at 37°C. Absorbance was read at 405 nm. The RTD-PCR mixture contained PCR grade sterile water, diluted template DNA, primers PAL1 and PAL2, 3' fluorescein (FL)-labelled probe oprL-FL, 5' LC Red 640-labelled and 3' phosphorylated probe oprL-LC, MgCl(2), and LC DNA Master Hybridisation Probes, containing Taq DNA polymerase, reaction buffer, dNTP mix with dUTP instead of dTTP, and MgCl(2). The amplification was performed in a LightCycler(™). The fluorescence signal of LC Red 640 was measured during the annealing phase. The measured fluorescence data was processed with analysis software. RESULTS AND DISCUSSION: The three methods showed a good concordance with the culture results. Conventional PCR was at least 100 times less sensitive than bacterial culture and had a low dynamic range (2 logs). With a lower detection limit of 10(3) CFU/g tissue, ELISA-PCR was ten times more sensitive than conventional PCR. The dynamic range, however, did not increase. ELISA-PCR is very time consuming (8 h). The RTD-PCR produced a linear quantitative detection range of 7 logs with a lower detection limit of 10(3) CFU/g tissue. More important, however, was that the time from sample collection to result was less than 1 h. Two biopsy specimens scored significantly higher in ELISA-PCR and RTD-PCR than in bacterial culture. This could indicate that DNA from dead bacteria was amplified. One out of ten culture positive biopsy samples was found negative by all PCR-based methods. Topical antimicrobial agents possibly inhibited PCR. These results show that RTD-PCR has potential for the rapid quantitative detection of pathogens in critical care patients, enabling early and individualized treatment. Further study is required to assess the reliability of this new technology, and its impact on patient outcome and hospital costs

    Optimality and evolution of transcriptionally regulated gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>How transcriptionally regulated gene expression evolves under natural selection is an open question. The cost and benefit of gene expression are the driving factors. While the former can be determined by gratuitous induction, the latter is difficult to measure directly.</p> <p>Results</p> <p>We addressed this problem by decoupling the regulatory and metabolic function of the <it>Escherichia coli lac </it>system, using an inducer that cannot be metabolized and a carbon source that does not induce. Growth rate measurements directly identified the induced expression level that maximizes the metabolism benefits minus the protein production costs, without relying on models. Using these results, we established a controlled mismatch between sensing and metabolism, resulting in sub-optimal transcriptional regulation with the potential to improve by evolution. Next, we tested the evolutionary response by serial transfer. Constant environments showed cells evolving to the predicted expression optimum. Phenotypes with decreased expression emerged several hundred generations later than phenotypes with increased expression, indicating a higher genetic accessibility of the latter. Environments alternating between low and high expression demands resulted in overall rather than differential changes in expression, which is explained by the concave shape of the cross-environmental tradeoff curve that limits the selective advantage of altering the regulatory response.</p> <p>Conclusions</p> <p>This work indicates that the decoupling of regulatory and metabolic functions allows one to directly measure the costs and benefits that underlie the natural selection of gene regulation. Regulated gene expression is shown to evolve within several hundreds of generations to optima that are predicted by these costs and benefits. The results provide a step towards a quantitative understanding of the adaptive origins of regulatory systems.</p

    L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches

    Get PDF
    Probiotics such as L. plantarum WCFS1 can modulate immune responses in healthy subjects but how this occurs is still largely unknown. Immune-sampling in the Peyer Patches has been suggested to be one of the mechanisms. Here we studied the systemic and intestinal immune effects in combination with a trafficking study through the intestine of a well-established immunomodulating probiotic, i.e. L. plantarum WCFS1. We demonstrate that not more than 2-3 bacteria were sampled and in many animals not any bacterium could be found in the PP. Despite this, L. plantarum was associated with a strong increase in infiltration of regulatory CD103+ DCs and generation of regulatory T cells in the spleen. Also, a reduced splenic T helper cell cytokine response was observed after ex vivo restimulation. L. plantarum enhanced Treg cells and attenuated the T helper 2 response in healthy mice. We demonstrate that, in healthy mice, immune sampling is a rare phenomenon and not required for immunomodulation. Also in absence of any sampling immune activation was found illustrating that host-microbe interaction on the Peyer Patches was enough to induce immunomodulation of DCs and T-cells

    Low dose CT vs plain abdominal radiography for the investigation of the acute abdomen

    Get PDF
    Background: To compare low-dose abdominal computed tomography (LDCT) with plain abdominal radiography (AR) in the primary investigation of acute abdominal pain to determine if there is a difference in diagnostic yield, the number of additional investigations required and hospital length of stay (LOS). Methods: This randomized controlled trial was approved by the institutional review board, and informed consent was obtained. Patients presenting to the emergency department with an acute abdomen and who would normally be investigated with AR were randomized to either AR or LDCT. The estimated radiation dose of the LDCT protocol was 2–3 mSv compared to 1.1 mSv for AR. Pearson\u27s chi-square and the independent samples t-test were used for the statistical analysis. Results: A total of 142 patients were eligible, and after exclusions and omitting those with incomplete data, 55 patients remained for analysis in the AR arm and 53 in the LDCT arm. A diagnosis could be obtained in 12 (21.8%) patients investigated with AR compared to 34 (64.2%) for LDCT (P \u3c 0.001). Twenty-eight (50.9%) patients in the AR group required further imaging during their admission compared to 14 (26.4%) in the LDCT group (P= 0.009). There was no difference in the median hospital LOS (3.84 days for AR versus 4.24 days for LDCT, P= 0.83). Conclusion: LDCT demonstrates a superior diagnostic yield over AR and reduces the number of subsequent imaging tests for a minimal cost in radiation exposure. However, there is no difference in the overall hospital LOS between the two imaging strategies

    Comparison of the sensitivity of culture, PCR and quantitative real-time PCR for the detection of Pseudomonas aeruginosa in sputum of cystic fibrosis patients

    Get PDF
    Background: Pseudomonas aeruginosa is the major pathogen involved in the decline of lung function in cystic fibrosis (CF) patients. Early aggressive antibiotic therapy has been shown to be effective in preventing chronic colonization. Therefore, early detection is important and sensitive detection methods are warranted. In this study, we used a dilution series of P. aeruginosa positive sputa, diluted in a pool of P. aeruginosa negative sputa, all from CF patients-to mimick as closely as possible the sputa sent to routine laboratories-to compare the sensitivity of three culture techniques versus that of two conventional PCR formats and four real-time PCR formats, each targeting the P. aeruginosa oprL gene. In addition, we compared five DNA-extraction protocols. Results: In our hands, all three culture methods and the bioMerieux easyMAG Nuclisens protocol Generic 2.0.1, preceded by proteinase K pretreatment and followed by any of the 3 real-time PCR formats with probes were most sensitive and able to detect P. aeruginosa up to 50 cfu/ml, i.e. the theoretical minimum of one cell per PCR mixture, when taking into account the volumes used in this study of sample for DNA-extraction, of DNA-elution and of DNA-extract in the PCR mixture. Conclusion: In this study, no difference in sensitivity could be found for the detection of P. aeruginosa from sputum between microbiological culture and optimized DNA-extraction and real-time PCR. The results also indicate the importance of the optimization of the DNA-extraction protocol and the PCR format
    corecore