125 research outputs found
An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound
We consider the problem of finding a low discrepancy coloring for sparse set
systems where each element lies in at most t sets. We give an efficient
algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching
the best known non-constructive bound for the problem due to Banaszczyk. The
previous algorithms only achieved an O(t^{1/2} log n) bound. The result also
extends to the more general Koml\'{o}s setting and gives an algorithmic
O(log^{1/2} n) bound
On the Closest Vector Problem with a Distance Guarantee
We present a substantially more efficient variant, both in terms of running
time and size of preprocessing advice, of the algorithm by Liu, Lyubashevsky,
and Micciancio for solving CVPP (the preprocessing version of the Closest
Vector Problem, CVP) with a distance guarantee. For instance, for any , our algorithm finds the (unique) closest lattice point for any target
point whose distance from the lattice is at most times the length of
the shortest nonzero lattice vector, requires as preprocessing advice only vectors, and runs in
time .
As our second main contribution, we present reductions showing that it
suffices to solve CVP, both in its plain and preprocessing versions, when the
input target point is within some bounded distance of the lattice. The
reductions are based on ideas due to Kannan and a recent sparsification
technique due to Dadush and Kun. Combining our reductions with the LLM
algorithm gives an approximation factor of for search
CVPP, improving on the previous best of due to Lagarias, Lenstra,
and Schnorr. When combined with our improved algorithm we obtain, somewhat
surprisingly, that only O(n) vectors of preprocessing advice are sufficient to
solve CVPP with (the only slightly worse) approximation factor of O(n).Comment: An early version of the paper was titled "On Bounded Distance
Decoding and the Closest Vector Problem with Preprocessing". Conference on
Computational Complexity (2014
On the Lattice Distortion Problem
We introduce and study the \emph{Lattice Distortion Problem} (LDP). LDP asks
how "similar" two lattices are. I.e., what is the minimal distortion of a
linear bijection between the two lattices? LDP generalizes the Lattice
Isomorphism Problem (the lattice analogue of Graph Isomorphism), which simply
asks whether the minimal distortion is one.
As our first contribution, we show that the distortion between any two
lattices is approximated up to a factor by a simple function of
their successive minima. Our methods are constructive, allowing us to compute
low-distortion mappings that are within a factor
of optimal in polynomial time and within a factor of optimal in
singly exponential time. Our algorithms rely on a notion of basis reduction
introduced by Seysen (Combinatorica 1993), which we show is intimately related
to lattice distortion. Lastly, we show that LDP is NP-hard to approximate to
within any constant factor (under randomized reductions), by a reduction from
the Shortest Vector Problem.Comment: This is the full version of a paper that appeared in ESA 201
Solving the Closest Vector Problem in Time--- The Discrete Gaussian Strikes Again!
We give a -time and space randomized algorithm for solving the
exact Closest Vector Problem (CVP) on -dimensional Euclidean lattices. This
improves on the previous fastest algorithm, the deterministic
-time and -space algorithm of
Micciancio and Voulgaris.
We achieve our main result in three steps. First, we show how to modify the
sampling algorithm from [ADRS15] to solve the problem of discrete Gaussian
sampling over lattice shifts, , with very low parameters. While the
actual algorithm is a natural generalization of [ADRS15], the analysis uses
substantial new ideas. This yields a -time algorithm for
approximate CVP for any approximation factor .
Second, we show that the approximate closest vectors to a target vector can
be grouped into "lower-dimensional clusters," and we use this to obtain a
recursive reduction from exact CVP to a variant of approximate CVP that
"behaves well with these clusters." Third, we show that our discrete Gaussian
sampling algorithm can be used to solve this variant of approximate CVP.
The analysis depends crucially on some new properties of the discrete
Gaussian distribution and approximate closest vectors, which might be of
independent interest
Near-Optimal Deterministic Algorithms for Volume Computation and Lattice Problems via M-Ellipsoids
We give a deterministic 2^{O(n)} algorithm for computing an M-ellipsoid of a
convex body, matching a known lower bound. This has several interesting
consequences including improved deterministic algorithms for volume estimation
of convex bodies and the shortest and closest lattice vector problems under
general norms
Faster Deterministic Volume Estimation in the Oracle Model via Thin Lattice Coverings
We give a 2O(n)(1+1/")n time and poly(n)-space deterministic algorithm for computing a (1+")n
approximation to the volume of a general convex body K, which comes close to matching the
(1+c/")n/2 lower bound for volume estimation in the oracle model by Bárány and Füredi (STOC
1986, Proc. Amer. Math. Soc. 1988). This improves on the previous results of Dadush and
Vempala (Proc. Nat’l Acad. Sci. 2013), which gave the above result only for symmetric bodies
and achieved a dependence of 2O(n)(1 + log5/2(1/")/"3)n.
For our methods, we reduce the problem of volume estimation in K to counting lattice points
in K Rn (via enumeration) for a specially constructed lattice L: a so-called thin covering of
space with respect to K (more precisely, for which L + K = Rn and voln(K)/ det(L) = 2O(n)).
The trade off between time and approximation ratio is achieved by scaling down the lattice.
As our main technical contribution, we give the first deterministic 2O(n)-time and poly(n)-
space construction of thin covering lattices for general convex bodies. This improves on a recent
construction of Alon et al. (STOC 2013) which requires exponential space and only works for
symmetric bodies. For our construction, we combine the use of the M-ellipsoid from convex
geometry (Milman, C. R. Math. Acad. Sci. Paris 1986) together with lattice sparsification and
densification techniques (Dadush and Kun, SODA 2013; Rogers, J. London Math. Soc. 1950)
Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem
An important theorem of Banaszczyk (Random Structures & Algorithms `98)
states that for any sequence of vectors of norm at most and any
convex body of Gaussian measure in , there exists a
signed combination of these vectors which lands inside . A major open
problem is to devise a constructive version of Banaszczyk's vector balancing
theorem, i.e. to find an efficient algorithm which constructs the signed
combination.
We make progress towards this goal along several fronts. As our first
contribution, we show an equivalence between Banaszczyk's theorem and the
existence of -subgaussian distributions over signed combinations. For the
case of symmetric convex bodies, our equivalence implies the existence of a
universal signing algorithm (i.e. independent of the body), which simply
samples from the subgaussian sign distribution and checks to see if the
associated combination lands inside the body. For asymmetric convex bodies, we
provide a novel recentering procedure, which allows us to reduce to the case
where the body is symmetric.
As our second main contribution, we show that the above framework can be
efficiently implemented when the vectors have length ,
recovering Banaszczyk's results under this stronger assumption. More precisely,
we use random walk techniques to produce the required -subgaussian
signing distributions when the vectors have length , and
use a stochastic gradient ascent method to implement the recentering procedure
for asymmetric bodies
- …