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Abstract
We give a 2O(n)(1+1/ε)n time and poly(n)-space deterministic algorithm for computing a (1+ε)n

approximation to the volume of a general convex body K, which comes close to matching the
(1+c/ε)n/2 lower bound for volume estimation in the oracle model by Bárány and Füredi (STOC
1986, Proc. Amer. Math. Soc. 1988). This improves on the previous results of Dadush and
Vempala (Proc. Nat’l Acad. Sci. 2013), which gave the above result only for symmetric bodies
and achieved a dependence of 2O(n)(1 + log5/2(1/ε)/ε3)n.

For our methods, we reduce the problem of volume estimation in K to counting lattice points
in K ⊆ Rn (via enumeration) for a specially constructed lattice L: a so-called thin covering of
space with respect to K (more precisely, for which L + K = Rn and voln(K)/det(L) = 2O(n)).
The trade off between time and approximation ratio is achieved by scaling down the lattice.

As our main technical contribution, we give the first deterministic 2O(n)-time and poly(n)-
space construction of thin covering lattices for general convex bodies. This improves on a recent
construction of Alon et al. (STOC 2013) which requires exponential space and only works for
symmetric bodies. For our construction, we combine the use of the M-ellipsoid from convex
geometry (Milman, C.R. Math. Acad. Sci. Paris 1986) together with lattice sparsification and
densification techniques (Dadush and Kun, SODA 2013; Rogers, J. London Math. Soc. 1950).
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1 Introduction

The problem of estimating the volume of a convex body is one of the most fundamental
and well studied problems in high dimensional geometry. It is also one of the most striking
examples of the power of randomization. In [11, 12], Bárány and Füredi showed that any
deterministic volume algorithm for n-dimensional convex bodies having access only to a
membership oracle (which returns whether a point is in the convex body or not), requires at
least (1+c/ε)n/2 membership queries to estimate volume to within a (1+ε)n factor, for c > 0
an absolute constant any ε small enough. In particular, an O(1)-approximation requires
nΩ(n) queries. In a breakthrough result however, Dyer, Frieze and Kannan [9] showed that if
the algorithm is allowed to err with small probability, then even a (1 + ε) approximation can
be obtained in poly(n, 1/ε)-time. Their algorithm relied on novel Monte Carlo Markov Chain
techniques that spurred much further research. These works left a major open question: can
the volume algorithm be made deterministic when the description of the convex body is
given explicitly (e.g. a polytope given by its inequalities)?

A related (and more modest) question, which has only recently received attention,
is whether one can come close to matching the lower bounds of Bárány and Füredi for
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deterministic volume computation in the oracle model. We note it was open to achieve
such bounds deterministically even for explicitly presented polytopes. This was recently
answered in the affirmative by Vempala and the author in [8], which gave a deterministic
2O(n)(1 + log5/2(1/ε)/ε3)n-time and polynomial space algorithm for estimating the volume
of a symmetric convex body K (K is symmetric if K = −K) to within (1 + ε)n. The main
tool developed there was an algorithmic version of (variants of) Milman’s construction for
the M-ellipsoid in convex geometry [18]. An M -ellipsoid of an n-dimensional convex body
K is an ellipsoid E (an ellipsoid is a linear transformation of the Euclidean ball) satisfying
that 2O(n) translates of E suffice to cover K and vice versa. Note that the volume of an
M-ellipsoid of K immediately provides a 2O(n) factor approximation to the volume of K.

From the above, two natural avenues of improvement were to reduce the dependence on
ε and to generalize the result to asymmetric convex bodies.

2 Main Contribution

We make improvements on both of the last two fronts. Our main result is stated below.

I Theorem 1 (Volume Estimation). For a convex body K ⊆ Rn given by a membership
oracle, and any ε > 0, one can compute V ≥ 0 satisfying voln(K) ≤ V ≤ (1 + ε)nvoln(K) in
deterministic 2O(n)(1 + 1/ε)n-time and poly(n)-space.

Both the algorithm and that of [8] share the same high level approach, namely, reducing
volume estimation to counting lattice points within a carefully chosen convex body and
lattice.

We note that if we are satisfied with a cn approximation of volume for some large enough
c > 0, then the volume of an M-ellipsoid is already a good enough volume approximation
for K and hence lattice point counting is not needed. This extends to asymmetric convex
bodies as well, by replacing K with the symmetric body K −K (an oracle for which can be
efficiently computed, see [13]) and using the standard inequalities

2nvoln(K) ≤ voln(K −K) ≤
(

2n
n

)
voln(K) (see [23]).

Hence the above result is truly interesting for the case of small constant ε.
Our runtime improvement over the algorithm of [8] comes from a much more efficient

reduction from volume estimation to lattice point counting. In particular, the crucial
ingredient in our improved reduction is the use of so-called thin lattice coverings of space with
respect to K (and related convex bodies). The heart of our volume algorithm, and our main
technical contribution, is a deterministic construction of thin-covering lattices for general
convex bodies with good enumeration properties, that is, where lattice point enumeration can
be performed efficiently using only polynomial space. This improves on a recent thin-lattice
construction of [1] which requires exponential space and only works for symmetric bodies.

Organization. The remainder of this paper is organized as follows. First, we shall explain
the reduction between volume estimation and lattice point counting, which will motivate
the need for thin covering lattices and other related concepts. Second, we will present the
polynomial space lattice point enumeration technique we use – Schorr-Euchner enumeration –
and briefly discuss its implementation and associated challenges. Third, we give the formal
statements of our main thin lattice construction and related algorithms, and their relations
to prior work. Finally, in the remainder, we shall detail the main ideas behind the thin
covering lattice construction.

SoCG’15



706 Volume Estimation via Thin Lattice Coverings

3 Preliminaries

Basic concepts. For two sets A,B ⊆ Rn, we define their Minkowski sum A + B =
{a + b : a ∈ A,b ∈ B}. For vectors x,y ∈ Rn, we write 〈x,y〉 =

∑n
i=1 xiyi to denote

the standard inner product and ‖x‖2 =
√
〈x,x〉 for the Euclidean norm. We let Bn

2 =
{x ∈ Rn : ‖x‖2 ≤ 1} denote the unit Euclidean ball in Rn. For a set A ⊆ Rn, we denote its
interior by A◦. A convex body K ⊆ Rn is a compact convex set with non-empty interior. A
function f : Rn → R is L-Lipshitz if ∀x,y ∈ Rn, |f(x)− f(y)| ≤ L‖x− y‖2.

Lattices. We give some basic definitions of lattice concepts.

I Definition 2 (Lattices and Bases). A full rank lattice L ⊆ Rn is defined as all integer
combinations of some basis B = (b1, . . . ,bn) ∈ Rn×n. In particular, L = BZn. The
determinant of L is defined as det(L) = | det(B)|, which is invariant to the choice of lattice
basis. We define b∗1, . . . ,b∗n, the associated dual basis, to be the unique vectors satisfying〈
bi,b∗j

〉
= 1 if i = j and 0 otherwise (corresponding to the columns of B−T ).

I Definition 3 (Gram Schmid Projections). For a basis b1, . . . ,bn ∈ Rn, we define the ith
Gram-Schmidt projection πi, i ∈ [n+ 1], to be the orthogonal projection onto the orthogonal
complement of the linear span of b1, . . . ,bi−1. Note that π1 is the identity on Rn and πn+1
is the identically 0 map.

I Definition 4 (Basis Parallelipiped). For a full rank lattice L ⊆ Rn with basis B, we
define P(B) = B[−1/2, 1/2)n to be the half-open symmetric parallelepiped. Note that
voln(P(B)) = det(L).

I Definition 5 (Sublattice Index). For a full rank lattice L ⊆ Rn and full rank sublattice L′ ⊆
L, we define the index of L′ in L, denoted [L : L′], as | {y + L′ : y ∈ L} | <∞ (i.e. number
of shifts of L′ in L). Here, we have the fundamental identity [L : L′] = det(L′)/ det(L).

I Definition 6 (Lattice Tiling). A measurable set A ⊆ Rn tiles with respect to a full rank
lattice L ⊆ Rn (and vice versa) if for every x ∈ Rn there is a unique y ∈ L such that
x ∈ y +A. Here, A is said to be a fundamental domain of L.

A basic fact is that every fundamental domain of L has the same volume. In particular,
since P(B) is a fundamental domain, every fundamental domain of L has volume det(L).

Computational model. For a convex body K ⊆ Rn, a membership oracle OK for K takes
as input x ∈ Rn and returns 1 if x ∈ K and 0 otherwise. K is (a0, r, R)-centered, for
r,R > 0 and a0 ∈ Rn, if rBn

2 ⊆ K − a0 ⊆ RBn
2 . When we refer to K being centered, we

shall mean that the centering guarantees (a0, r, R) exist and are implicitly passed to any
algorithm operating on K and that the complexity of this algorithm may depend on these
guarantees. For ε > 0, we defineKε = K+εBn

2 andK−ε = {x ∈ K : x + εBn
2 ⊆ K}. A weak

membership oracle OK for K, takes an additional parameter ε > 0, and only guarantees that
OK(x, ε) = 1 if x ∈ K−ε and 0 if x /∈ Kε. All our algorithms will operate on centered convex
bodies equipped with (weak) membership oracles, and the complexity of our algorithms will
be measured by the number of arithmetic operations and oracle calls they perform.

One of the main algorithmic tools we will use is the following classical result in convex
optimization:

I Theorem 7 (Convex Optimization [25, 13]). Let K ⊆ Rn be a centered convex body given
by a weak membership oracle OK . Let f : Rn → R denote an L-Lipshitz convex function.
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Then, for ε > 0, a vector y ∈ K satisfying

f(y)− ε ≤ min
x∈K

f(x) ≤ f(y)

can be computed using a polynomial number of arithmetic operations, oracle calls and
evaluations of f .

4 From Volume Estimation to Counting Lattice Points

In this section, we will show how to reduce the volume estimation problem to counting
lattice points inside a well-chosen convex body. We will primarily concern ourselves with the
task of minimizing the number of lattice points we need to enumerate to achieve a desired
approximation factor. The important details regarding how to efficiently enumerate these
lattice points is left to later sections.

To build intuition, we shall first try to estimate the volume of a convex body K ⊆ Rn by
counting the number of points it contains in the standard integer lattice Zn. Through this
attempt, we will expose some of the main ingredients needed to make volume approximation
efficient.

For the integer lattice, the canonical relation between lattice point counting and volume
is simply derived by associating every point in y ∈ Zn with the half open cube around it,
i.e. C = [−1/2, 1/2)n + y. Since these shifted cubes have volume 1 and are all disjoint, the
count |K ∩ Zn| is the same as the volume of the set S = (K ∩ Zn) + C. Now as is, the set
S may both miss parts of and “stick out” of K, so it is difficult to deduce any relationship
between their volumes. To fix one of these problems, note that the cubes around each integer
point form a tiling of space, that is every point in Rn is in exactly one such cube. Hence
if we enlarge S to contain all the cubes centered around Zn that touch K – formally, we
redefine S = ((K − C) ∩ Zn) + C – then we are guaranteed that S covers K. In particular,

|(K − C) ∩ Zn| = voln(S) ≥ voln(K).

Note then that the volume of S can be computed if we can enumerate the integer points
in K − C (we defer for now the discussion of how to do this efficiently). So now, from the
perspective of approximation, we are left with the problem that S may stick out very far
from K, and hence may have very large volume compared to K. Indeed, this may easily
happen (say if K is a ball of tiny radius), since we have made no assumptions on K.

Regardless, if we scale down Zn and C = [−1/2, 1/2)n by ε, then as we let ε → 0, the
volume of S (defined on the scaled down lattice and cube) will clearly converge to the volume
of K since S will converge to K. Given this, we are lead to two basic questions. Firstly,
how small do we need to make ε to get a (1 + ε)n approximation of volume? Secondly, how
many lattice points do we need to enumerate to compute this approximation? Crucially, the
answer to this last question will essentially determine the complexity of the algorithm.

To get a quantitative estimate, let us normalize the geometry by assuming that ±C ⊆ K/2.
(while requiring the condition for both C and −C is essentially redundant here, it will be
very important when we generalize the forthcoming analysis.) Note that this can always be
achieved by an appropriate shift and scaling of K. Letting Sε = ((K − εC) ∩ εZn) + εC, for
ε > 0, by the same reasoning as before we have that

voln(K) ≤ voln(Sε) = voln(εC)|(K − εC) ∩ Zn| = εn|(K − εC) ∩ Zn|. (1)

SoCG’15
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Furthermore, since ±C ⊆ K/2, we have that

voln(Sε) = voln(((K − εC) ∩ εZn) + εC) ≤ voln(K + ε(C − C))
≤ voln(K + ε(K/2 +K/2)) = voln((1 + ε)K) = (1 + ε)nvoln(K), (2)

where the last two equalities hold by convexity of K and the homogeneity of volume
respectively. Hence, from the above computing a (1 + ε)n approximation to voln(K) reduces
to enumerating the points in (K − εC) ∩ εZn. Combining (1),(2) and rearranging, we see
that the number of points we must enumerate is bounded by

|(K − εC) ∩ Zn| ≤ (1 + 1/ε)nvoln(K) = 2n(1 + 1/ε)n (voln(K/2)/voln(C)) .

Now, if we believe that the correct measure of complexity is simply the number of lattice
points we must enumerate (ignoring the actual complexity of enumeration for now), then we
would achieve the complexity estimate in Theorem 1 if voln(K/2)/voln(C) = 2O(n). However,
it is clear that not every convex body K can be scaled and shifted such that ±C ⊆ K/2 and
voln(K/2)/voln(C) = 2O(n).

On the other hand, it is easy to see that the above analysis can be substantially generalized.
More precisely, instead of relying on the integer lattice, we may use an arbitrary lattice
L = BZn, for some basis B. Instead of cubes (or parallelepipeds), we may use any measurable
set F ⊆ Rn which tiles with respect to L. From here, if there exists c ∈ K, such that
±F ⊆ (K − c)/2 (note that F need no longer be symmetric), then by the same analysis as
above we have that

voln(K) ≤ εn · voln(F ) · |(K − εF ) ∩ εL| ≤ (1 + ε)nvoln(K). (3)

When trying to use the above formula to approximate volume, one may rightly worry that
the set F above maybe quite complicated, and hence of limited algorithmic use. Fortunately,
it turns out that we won’t actually need to know F at all – we will only need to rely on its
existence – and, in fact, only knowledge of the point c will be required. To justify this, we
first remark that F is a fundamental domain, and hence voln(F ) = det(L), which is easily
computable given B.

Let K[c] = (K − c) ∩ (c−K) denote the symmetrization of K about c (note that K[c]
is indeed symmetric). By construction, we see that

±F ⊆ ±K[c]/2 = K[c]/2 ⊆ (K − c)/2.

From here, it is not hard to check that replacing K − εF by K + εK[c]/2 in (3) yields

voln(K) ≤ εn · det(L) · |(K + εK[c]/2) ∩ εL| ≤ (1 + ε)nvoln(K). (4)

The above formula will indeed form the basis of our algorithmic approach, where we note
that a membership oracle for K + εK[c]/2 (under mild assumptions on c) can be efficiently
constructed from a membership oracle for K (see [13]). Rearranging as before, we get that
the number of lattice points we need to enumerate to compute the desired approximation is
bounded by

|(K + εK[c]/2) ∩ εL| ≤ 2n(1 + 1/ε)n voln(K)
voln(K[c])︸ ︷︷ ︸

(a)

voln(K[c]/2)
det(L)︸ ︷︷ ︸

(b)

(5)

Hence, to achieve the desired complexity bound, we will need both the expressions (a)
and (b) to be bounded by 2O(n). More precisely, we will need to compute a point c ∈ K and
a lattice L ⊆ Rn such that
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1. voln(K) ≤ 2O(n)voln(K[c]).
2. ∃ F ⊆ K[c] a fundamental domain for L, and voln(K[c]) ≤ 2O(n) det(L).

We note that condition (1) becomes trivial if K is already symmetric, since we can simply
choose c = 0. In condition (2), note that we have, for convenience of notation, multiplied
the required conditions for L in (5) by 2.

We now relate some initial details of how to find c and L satisfying these conditions,
deferring the full discussion of our methods to later sections. The plan here is to treat each
condition separately. In particular, we will first choose c to satisfy (1) and then pick L
satisfying (2).

Choosing the lattice L. Once we have chosen c, we wish to choose a lattice satisfying
condition (2). For this purpose, we will only use the fact that K[c] is a symmetric convex
body (which is why we can treat both conditions separately). As a first remark, we note
that the existence of fundamental domain F ⊆ K[c] is equivalent to asking that K[c] cover
space with respect to L.

I Definition 8 (Lattice Covering). A measurable A ⊆ Rn is covering with respect to a full
rank lattice L ⊆ Rn (and vice versa) if L+ A = Rn. The covering induced by A and L is
said to be α-thin, α ≥ 1, if voln(A)/ det(L) ≤ α.

Indeed, assuming that L+ K[c] = Rn, we can recover a suitable fundamental domain
F by picking (in a measurable way) a unique representative of in (L+ x) ∩K[c], for each
distinct coset L+ x, x ∈ Rn. We note that this simply corresponds to throwing away the
“overrepresented” parts of K[c]. From this discussion, we see that every covering of space
must have thinness at least 1. Note that at a high level, the covering induced by K[c] and L
being α-thin means that on average points in Rn are covered by at most α lattice shifts of
K[c] (and clearly at least 1).

We can now restate our goal as that of constructing a lattice L forming a 2O(n)-thin
covering with respect to K[c]. We give a detailed accounting of how to build such lattices in
section 8.1.

Choosing the center c. To compute c, we will require the following measure of symmetry:

I Definition 9 (Kovner-Besicovitch Symmetry Measure). For a convex body K ⊆ Rn, we
define its Kovner-Besicovitch measure of symmetry (see [15]) as

Symkb(K) = max
c∈K

voln(K[c])/voln(K), where K[c] = (K − c) ∩ (c−K). (6)

Note that K is symmetric (about some center) iff Symkb(K) = 1. For c ∈ K, we define
its KB value to be voln(K[c])/voln(K). Clearly, to satisfy condition (1), the best center we
can choose is simply that of maximum KB value. For such a maximizer to be useful, we must
at least convince ourselves that best center has KB value at least 2−O(n). For this purpose,
let X denote a uniform random variable over K. By a classical computation, we have that

EX

[
voln(K[X])

voln(K)

]
=
∫

K

voln(K[x])
voln(K)2 dx =

∫
K

∫
K

1[2x− y ∈ K]
voln(K)2 dydx

=
∫

K

voln((K + y)/2)
voln(K)2 dy = 2−n.

SoCG’15



710 Volume Estimation via Thin Lattice Coverings

By the probabilistic method, we therefore have that Symkb(K) ≥ 2−n, which is more than
good enough for us. Furthermore, it was actually shown in [19] that the centroid µ = E[X]
of K has KB value at least 2−n. Hence, with the aid of random sampling techniques over
convex bodies [9], computing a point with good KB value is rather straightforward.

Since our goal is to get a deterministic algorithm however, we cannot rely on random
sampling methods. Perhaps surprisingly, our approach for computing a high KB value
point will be to approximately solve the optimization problem in (6). Indeed, by the
Brunn-Minkowski inequality (which states that vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n for
A,B,A+B measurable), the function f(c) = voln(K[c])1/n is in fact concave over K. Hence,
maximizing f is a concave optimization problem.

We define a point c ∈ K to be an α-approximate KB point for K, 0 < α ≤ 1, if its
KB value voln(K[c])/voln(K) is at least an α-factor of Symkb(K). For our purposes, it will
suffice to be able to compute a 2−O(n) approximate KB point, which we note corresponds
to computing a constant factor approximation to maxc∈K f(c). We will actually be able to
compute (1 + ε)−n-approximation KB points for any desired ε > 0 (see Theorem 22). Our
approximation algorithm will be somewhat non-trivial, requiring many calls to our volume
algorithm over symmetric bodies (noting that each K[c] is symmetric). We defer the full
discussion to section 8.2.

5 Schnorr-Euchner Enumeration

The currently most powerful polynomial space lattice point enumeration strategy is Schnorr-
Euchner enumeration. It is the primary enumeration method for all polynomial space solvers
for the Closest Vector Problem (CVP) under the Euclidean norm (given a target t and lattice
L, find the closest vector in L to t), and will form the core of our enumeration algorithm.
We now explain how to adapt it to enumerate lattice points in general convex bodies (it was
originally specified only for Euclidean balls, see for example [16]), and present some of its
important properties.

High level algorithm. Given a basis B = (b1, . . . ,bn) of L and a convex body K, Schnorr-
Euchner builds all feasible solutions to {z ∈ Zn :

∑n
i=1 zibi ∈ K}, corresponding to L ∩K,

using a search tree over the coefficients. The nodes at level i of the tree, i ∈ {0, . . . , n},
correspond to integral assignments of the last i coefficients that are “feasible” for K. Precisely,
a partial assignment zn−i+1, . . . , zn ∈ Z is feasible for K if ∃ r1, . . . , rn−i ∈ R such that

n−i∑
j=1

rjbj +
n∑

j=n−i+1
zjbj ∈ K. (7)

By convention, we consider the root (level 0) to have an empty assignment, which is feasible
iff K 6= ∅. From a level i node, with partial assignment zn−i+1, . . . , zn ∈ Z, we recurse on
all feasible extensions zn−i, . . . , zn with zn−i ∈ Z. By convexity of K, the set of integer
assignments for zn−i inducing a feasible extension form a consecutive interval, which will
allow us to enumerate them efficiently.

Implementation. Since the nature of computations in the oracle model are always approx-
imate, we will have to relax the notion of feasible partial assignment when implementing the
above algorithm. In particular, we will only be able to determine where a partial assignment
is either not feasible for K or feasible for Kε, for any desired error tolerance ε > 0. The
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exact guarantees for our enumeration algorithm, which will be sufficient for all intended
applications, are stated below.

I Lemma 10 (Enumeration Complexity). Let K ⊆ Rn be a (a0, r, R)-centered convex body
given a weak membership oracle, and let L ⊆ Rn a full rank lattice with basis B = (b1, . . . ,bn).
Then for 0 < ε < 1, a set S satisfying K ∩ L ⊆ S ⊆ Kε ∩ L can be enumerated, where every
point is outputted exactly once, using polynomial space and time polynomial times

n∑
i=0
|πn−i+1(Kε) ∩ πn−i+1(L)|,

where π1,. . . ,πn are the Gram-Schmidt projections of B.

Proof. Given the high level description above, to fully describe the algorithm, it remains
to describe how we compute all feasible extensions of a giving partial assignment. In the
algorithm, we will guarantee that we enumerate over all partial assignments feasible for K,
while enumerating at most over all partial assignments feasible for Kε.

Extending a partial assignment. Let b∗1, . . . ,b∗n be the associated dual basis for B. Assume
that we are at a level i recursion node, 0 ≤ i ≤ n, with an associated partial assignment
zn−i+1, . . . , zn ∈ Z. To begin processing this node, we first check that the partial assignment
is feasible. Letting t =

∑n
j=n−i+1 zjbj , and

d = min
x∈K
‖πn−i+1(x− t)‖2,

we use Theorem 7 to compute d′ ∈ R satisfying d′ ≤ d ≤ d′ + ε. If d′ > 0, we conclude that
the partial assignment is infeasible for K and terminate the node, and if d′ ≤ 0, we conclude
that it is feasible for Kε and continue.

If i = n, we output the lattice point
∑n

i=1 zibi ∈ Kε∩L and terminate the node. If i < n,
we now compute the possible feasible extensions with zn−i ∈ Z, where we shall guarantee
that all integral extensions feasible for K are found and that all examined extensions are
feasible for Kε. Let b̄∗n−i = πn−i+1(b∗n−i) and b̂∗n−i = b∗n−i − b̄∗n−i. Set M = 4‖b̂∗n−i‖R/ε,
and let

u = max
x∈K

〈
b̄∗n−i, t

〉
+
〈

b̂∗n−i,x
〉
−M‖πn−i+1(x− t)‖2

l = min
x∈K

〈
b̄∗n−i, t

〉
+
〈

b̂∗n−i,x
〉

+M‖πn−i+1(x− t)‖2 .

Using Theorem 7, we compute u′ ∈ R satisfying u ≤ u′ ≤ u + ε‖b̂∗n−i‖2/2 and l′ ∈ R
satisfying l ≥ l′ ≥ l − ε‖b̂∗n−i‖2/2. We now recurse on the integral extensions zn−i ∈
{z ∈ Z : l′ ≤ z ≤ u′}.

Correctness. We must guarantee that the above algorithm correctly returns a set of points
between K ∩L and Kε ∩L. Due to lack of space, we defer this analysis to the full version of
the paper.

Complexity analysis. To bound the runtime of the above algorithm, we remark that the
work done at each node in the recursion tree is polynomial (noting that the work enumerating
{z ∈ Z : l′ ≤ z ≤ u′} can be charged to a node’s children), hence it suffices to bound the
number of nodes in the tree. Given the above analysis, for each i, 0 ≤ i ≤ n, the nodes

SoCG’15



712 Volume Estimation via Thin Lattice Coverings

are level i are each associated with a distinct point in πn−i+1(Kε) ∩ πn−i+1(L). Hence, the
complexity of the algorithm is indeed polynomial times

∑n
i=0 |πn−i+1(Kε) ∩ πn−i+1(L)|, as

needed. J

Motivated by the above lemma, we define the following measure of enumeration complexity.

I Definition 11 (Schnorr-Euchner Enumerable). A convex bodyK ⊆ Rn is α-Schnorr-Euchner
enumerable, or α-SE, with respect to a basis B = (b1, . . . ,bn) for L (or vice versa) if for every
shift t, t ∈ Rn, and level i, i ∈ {1, . . . , n}, we have that |πn−i+1(K + t) ∩ πn−i+1(L)| ≤ α,
i.e. the number of distinct feasible partial assignments for K + t with respect to B at level i
is bounded by α.

As explained previously, the total number of feasible partial assignment controls the
essential complexity of Schnorr-Euchner enumeration. The usefulness of the α-SE property
for K is that it will enable us to bound the complexity of Schnorr-Euchner enumeration for
general convex sets via their covering numbers with respect to K.

I Definition 12 (Covering Numbers). For two sets C,D ⊆ Rn, we denote the covering number
of C with respect to D

N(C,D) = min {|T | : T ⊆ Rn, C ⊆ T +D} .

C,D have covering numbers bounded by (c1, c2) if N(C,D) ≤ c1 and N(D,C) ≤ c2.

The following corollary, which will be crucial to making our volume algorithm efficient, is
immediate:

I Corollary 13. Let K ⊆ Rn be a convex body and L ⊆ Rn be a full rank lattice with basis B.
Assume that K is α-SE with respect to B. Then for any convex body C ⊆ Rn, C is αN(C,K)-
SE with respect to B. In particular, if C is centered and equipped with a weak membership
oracle, then for any ε′ > 0 and t ∈ Rn, a set S satisfying (C + t) ∩ L ⊆ S ⊆ (Cε′ + t) ∩ L
can be enumerated using polynomial space in time polynomial times α ·N(C,K).

To help make the above bounds effective, we will use the fact that covering numbers
for convex bodies are tightly controlled by volumes. We note that we will generally be use
these estimates with respect to different scalings of the same convex body (or one of its
symmetrizations).

I Theorem 14 (Covering Bounds [24]). For convex bodies C,D ⊆ Rn, we have that

voln(C −D)
voln(D −D) ≤ N(C,D) ≤ n(logn+ log logn+ 5)voln(C −D)

voln(D) .

The next lemma two lemmas will enable us to get the main estimates we will use to
bound SE-complexity.

I Lemma 15. Let K ⊆ Rn be a convex body, and let L ⊆ Rn be a full rank lattice with basis
B = (b1, . . . ,bn). Then K is N(K,P(B))-SE with respect to B.

Proof. Let T ⊆ Rn satisfy K ⊆ T + P(B) and |T | = N(K,P(B)). Letting π1, . . . , πn

denote the Gram-Schmidt projections of B, it is easy to check that πi(P(B)), i ∈ [n], is the
parallelepiped of the basis πi(bi), . . . , πi(bn) for πi(Λ), and hence is a fundamental domain
of πi(Λ). Given this, for each x ∈ T , |πi(x + P(B)) ∩ πi(Λ)| = 1. Since πi(T + P(B)) covers
πi(K) ∩ πi(Λ), we deduce that |πi(K) ∩ πi(Λ)| ≤ |T |. Hence, K is |T |-SE as needed. J
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I Lemma 16 (Robustness of SE-complexity). Let K ⊆ Rn be a convex body, L ⊆ Rn be a full
rank lattice with basis B. If K is α-SE with respect to B, then given a basis B̃ of
1. L′ ⊆ L, a full rank sublattice, a basis B′ of L′ for which K is α-SE
2. L ⊆ L′, a full rank superlattice, a basis B′ of L′ for which K is α · [L′ : L]-SE
can be computed in polynomial time.

6 Lattice Packing and Covering

We now present some additional relevant lattice concepts. We refer the reader to book [14]
for a comprehensive reference.

For a symmetric convex body K, we define ‖x‖K = inf {s ≥ 0 : x ∈ sK} as the norm
induced by K, which satisfies all norm properties.

I Definition 17 (Lattice Packing). A measurable set A ⊆ Rn packs with respect to a full
rank lattice L ⊆ Rn (and vice versa) if the translates y +A, y ∈ L, are mutually disjoint.

The packing induced by A and L is α-dense if voln(A)/ det(L) ≥ α. We note that packing
density is always less than 1.

I Definition 18 (Minimum Distance). For a symmetric convex body K ⊆ Rn and full rank
lattice L ⊆ Rn, we denote λ1(K,L) = miny∈L\{0} ‖y‖K , the minimum distance of L under
‖ · ‖K (length of shortest non-zero vector).

I Definition 19 (Packing and Covering Radius). Let K ⊆ Rn be a convex body and L ⊆ Rn

be a full rank lattice.
Let %(K,L) = λ1(K −K,L) denote the packing radius of K with respect to L. K◦ packs

with respect to L iff %(K,L) ≥ 1. If K is symmetric %(K,L) = λ1(K,L)/2.
Let µ(K,L) = inf {s ≥ 0 : L+ sK = Rn} denote the covering radius of K with respect

to L. K covers with respect to L iff µ(K,L) ≤ 1.

I Lemma 20. Let K ⊆ Rn be a convex body and let L ⊆ Rn be a full rank lattice. Then, if
K covers with respect L and %(K,L) ≥ 1/β, β > 0, then the covering induced by K and L is
βn-thin.

Proof. By assumption %(K,L) ≥ 1/β, and hence (K/β)◦ packs with respect to L. In
particular, voln(K/β) ≤ det(L). Therefore, the thinness is covering induced by K and L is
bounded by voln(K)/ det(L) ≤ voln(K)/voln(K/β) = βn, as needed. J

7 Thin Covering Lattices

Our main technical contribution is a deterministic construction for thin covering lattices
with good Schnorr-Euchner enumeration properties. We state its guarantees below.

I Theorem 21 (Thin Lattice). Let K ⊆ Rn be (a0, r, R)-centered convex body given by a weak
membership oracle. Then, there is a deterministic 2O(n)-time and poly(n)-space algorithm
that constructs a basis B for a full rank lattice L ⊆ Rn and a point c ∈ K, satisfying
1. c is a (6/7)n-approximate KB point for K and K[c] is (c, r/(30n), 2R)-centered.
2. K[c] covers with respect to L and has packing radius %(K[c],L) ≥ 1/3.
3. K[c] is 2O(n)-SE with respect to B.

I Remarks. If K is symmetric, we can specialize the above theorem by setting c = 0, in
which case K[c] = K. By Lemma 20, in the above theorem, we have that L forms a 3n-thin
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covering with respect to K[c]. Next, since K[c] ⊆ K − c, L also covers with respect to K.
In particular, the thinness of the covering induced by K and L is bounded by

voln(K)/ det(L) = voln(K)/vol(K[c]) · voln(K[c])/ det(L) ≤ 2n(7/6)n3n = 7n.

Hence L is 2O(n)-thin covering lattice for both K[c] and K.

Volume estimation. We now use the above construction to prove our main volume estima-
tion result.

Proof of Theorem 1 (Volume Estimation). We wish to compute V such that voln(K) ≤
V ≤ (1 + ε)nvoln(K) for 0 < ε < 1, where K ⊆ Rn is a (a0, r, R)-centered convex body given
by a weak membership oracle.

To begin, we construct the lattice L with basis B, and point c ∈ K as guaranteed
by Theorem 21. From here, we construct a weak membership oracle OC for C = K +
(ε/3)K[c] from the weak membership oracle for K (see [13] for details). Note that K[c] is
(c, r/(30n), 2R)-centered and C is (a0, r, 2R)-centered. From here, letting ε′ = εr/(180n), we
use Corollary 13 on inputs C, (ε/3)L, (ε/3)B and ε′ to enumerate S, satisfying

(K + (ε/3)K[c]) ∩ (ε/3)L ⊆ Cε′
∩ (ε/3)L ⊆ (K + (ε/2)K[c]) ∩ (ε/3)L

in time

2O(n)N(K + (ε/2)K[c], (ε/3)K[c]) = 2O(n)(1 + 1/ε)n,

where the last inequality follows by Theorem 14. From here, we return V = |S| det(L)(ε/3)n

(note that we need only count each element of S as it is outputted, which requires only
polynomial space). The fact that V satisfies the required bounds follows directly from the
discussions in section 4 (see Equation (4)). J

Comparison with prior constructions. Much work has been dedicated to proving the
existence of extremely thin-lattice coverings [21, 20, 22, 4, 10] – much of instigated by C.A.
Rogers – where the best construction [22] provides nlog n+O(1)-thin coverings for any convex
body K.

All of these constructions rely on sampling from a probabilistic ensembles of lattices,
occasionally with some additional post processing, and are intrinsically difficult to deran-
domize. More problematically however, these ensembles produce lattices that are as “hard
as possible” (see for example, section 2 in [3]) to enumerate from with known polynomial
space methods, severely complicating their use in our context (and in many others in fact).

Given the above discussion, the construction in Theorem 21 gives the first existential
construction of “easy to enumerate” thin-covering lattices for general convex bodies. As an
added bonus of our construction, when the convex body K is symmetric, the covering lattice
we construct has packing radius at least 1/3 and has the property that CVP under the norm
‖ · ‖K can be solved in 2O(n) time and poly(n) space (since this reduces to enumeration
inside shifts of K). While building thin covering lattices for `p norms is trivial – 2n−1/pZn

is a 2O(n)-thin covering lattice for the `p norm – building ones with packing radius Ω(1). In
fact, even for the `2 norm, there is no known explicit construction of such a lattice. While
the packing radius property is not necessary in our main application, we believe it might be
useful elsewhere, such as in lattice based schemes for Locality Sensitive Hashing (see [2] for
an application using the 24-dimensional Leech lattice).
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The only previous algorithmic construction is due Alon et al [1], whose gave a deterministic
2O(n)-time and 2n-space thin-lattice construction for symmetric bodies based on a greedy
construction of Rogers [21] – which our construction is also based on – along with a 2n

space enumeration method. For their enumeration technique, they rely on the M-ellipsoid
covering and Voronoi cell based enumeration algorithms of [17, 7, 5]. With these techniques,
starting with a thin covering lattice L for a symmetric convex body K, they can enumerate
L∩C, for any convex body C, in time 2O(n)N(C,K) using 2n space. Hence, the enumeration
guarantees are similar to ours, though at the cost of exponential space.

Rogers’ greedy construction. We now describe Roger’s method and our related improve-
ments. This construction starts with essentially any lattice L and symmetric convex body
K such that %(K,L) ≥ 1. The constructions proceeds by iteratively making L denser, by
adding points in L/3 to L, while guaranteeing that the packing radius with respect to K
stays at least 1. This will have the net effect of increasing the packing density by 3. Since
the packing density cannot increase indefinitely (it can never go above 1), the densification
process eventually stops, at which point one can conclude that the final lattice L, after a
factor 3 scaling, covers with respect to K and has packing radius at least 1/3.

A first main problem is that even if we initialize Rogers’ construction with an “easy to
enumerate” lattice L, the final generated lattice maybe so far away from the initial lattice
that it loses the easy enumeration property. To avoid this problem, we show that if we start
the procedure with an easy to enumerate dense packing lattice for K, then the procedure
converges fast enough for the final generated lattice to retain the easy enumeration property.
To build the initial dense packing lattice, we begin with a lattice L with basis B derived from
the axes of an M-ellipsoid of K, which satisfies that B is 2O(n)-SE with respect to K, that
we then subsequently sparsify it, using techniques of [6], to make it induce a 2−O(n)-dense
packing with respect to K.

A second problem with Roger’s greedy construction is that it only directly works for
symmetric bodies. In particular, if we start with an asymmetric convex body K, the final
generated lattice will only be guaranteed to cover with respect to K−K and not K (here, the
only known relation is that µ(K,L) ≤ nµ(K −K,L), which is far too weak). To circumvent
this problem, we symmetrize K about an approximate KB point using an efficient algorithm
to construct such points. Our algorithm to construct approximate KB points will in fact rely
on many iterated calls of our volume algorithm and thin-lattice construction for symmetric
convex bodies.

8 Techniques

We now detail the main ideas behind our thin lattice construction. We begin by describing
our thin lattice construction for symmetric convex bodies, and continue with our algorithm
computing approximation Kovner-Besicovitch points. We recover our full thin lattice con-
struction (Theorem 21) by combining these two algorithms. Due to lack of space, we defer
most proofs to the full version of the paper.

8.1 Thin Lattice Construction
We now describe our construction of thin covering lattices for symmetric convex bodies,
corresponding to parts 2 and 3 of Theorem 21.

The construction will proceed in three stages. In the first stage, we build a base lattice Λ
with a basis B derived from the axes of an M -ellipsoid E of K, for which K is 2O(n)-SE. In
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the second stage, we sparsify the base lattice Λ so that it becomes a 2−O(n)-dense packing
lattice N for K using techniques from [6]. In the last stage, we densify N using Rogers’
procedure to derive the final 2O(n)-thin covering lattice L.

Through these stages, our goal will be to guarantee that the “distance” of the base Λ
to the final lattice L, quantified by the product of indexes [Λ : N ] · [L : N ], is bounded by
2O(n). Having achieved this, the robustness of SE-complexity (see Lemma 16) will allow us
to construct a basis for L with respect to which K is 2O(n)-SE. We now detail the main
arguments underlying each stage.

M-Lattice. For the first stage, we define the basis B of Λ, so that P(B) ⊆ E is a maximum
volume inscribed parallelepiped, where E an M-ellipsoid for K. Here it is not hard to check
that voln(E)/P(B) = voln(Bn

2 )/voln([−1/
√
n, 1/

√
n)n) = 2O(n). Given this, P(B) inherits

the covering properties of E with respect to K, in particular, N(K,P(B)), N(P(B),K) =
2O(n). In particular, det(Λ) = voln(P(B)) = 2Θ(n)voln(K), and, by Lemma 15, K is 2O(n)-SE
with respect to B.

Packing lattice. For the second stage, to make Λ a packing lattice, it suffices to “remove”
all the lattice points in Λ ∩ 2K \ {0} (by symmetry of K). By the covering properties,
|Λ∩2K| ≤ N(2K,K) ·N(K,P(B)) = 2O(n), and hence, we may expect to find a sublattice N
such that [Λ : N ] = 2O(n) and N ∩ 2K = {0}. Indeed, a simple expectation argument shows
that a “random” sublattice N of index 2O(n) avoids all the non-zero points in Λ ∩ 2K with
good probability (see [6]). Furthermore, one can find the sublattice N deterministically using
the method of conditional expectations. Since N is a sublattice, note that by Lemma 16, a
basis of N can be computed for which the SE-complexity of K does not increase compared
to B. To see that N induces a 2−O(n)-dense packing for K, note that

det(N ) = [Λ : N ] det(Λ) = 2O(n) det(Λ)

= 2O(n)voln(P(B)) = 2O(n)voln(K), as needed.

Rogers’ procedure. For the last stage, we initially set L ← N and then iteratively densify
L to get a 2O(n)-thin covering lattice. By assumption, L starts as a packing lattice for K,
or equivalently, L has minimum distance λ1(K,L) ≥ 2. To make L denser, we look for a
point x ∈ L/3 at distance greater than 2 from L under ‖ · ‖K . If such a point x is found,
we set L ← L+ {0,±x}. By the distance assumption and symmetry of K, we maintain the
invariant λ1(K,L) ≥ 2, while decreasing the determinant by a factor 3.

Note that each successful iteration increases the packing density by 3. Since the packing
density starts at 2−O(n), this process must terminate in at most O(n) steps. In particular,
after termination, we have that [L : N ] = 3O(n), and hence by Lemma 16 and our assumptions
on N , we can compute a B basis of L for which K is 2O(n)-SE (indeed, this can be done at
every iteration). Next, at termination, we must have that every point in L/3 is at distance
less than 2 from L. From here, it is not hard to show that every point in Rn is at distance
at most (3/2) · 2 = 3, i.e. µ(K,L) ≤ 3. We can therefore return L/3 as our covering lattice,
which will have packing radius at least 1/3 as desired.

The last detail is to show that at each stage, we can find a “far away” point in L/3 or
decide that none exists in 2O(n)-time. By the above discussion, we can assume that at the
current stage, we have a basis B for L for which K is 2O(n)-SE. From here, it is easy to
see that there is a point in L/3 at distance greater than 2 iff there exists x ∈ B {0,±1/3}n

(yielding representatives for each coset in (L/3)/L) at distance greater than 2. Since a point
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x ∈ Rn is at distance greater than 2 from L iff (x + 2K) ∩ L = ∅, one can test this property
for any x in 2O(n)-time using Schnorr-Euchner enumeration. Repeating this test 3n times for
each point in B {0,±1/3}n yields the result.

This completes our description thin covering lattice constructions for symmetric bodies.

8.2 Computing Approximate Kovner-Besicovitch Points
We state the guarantees for our algorithm computing approximate KB points below.

I Theorem 22. Let K ⊆ Rn be a (a0, r, R)-centered convex body given by a weak membership
oracle. Then, for ε > 0, one can compute a (1 + ε)−n approximate Kovner-Besicovitch point
c ∈ K, such that K[c] is (c, εr/(5n), 2R)-centered, in deterministic 2O(n)(1 + 1/ε)2n+1 time
and poly(n) space.

I Remark. Part 1 of Theorem 21 follows by applying the Theorem 22 to K with ε = 1/6.

High level algorithm. First, by applying a suitable linear affine transformation to K

(i.e. standard ellipsoidal rounding), we may assume that Bn
2 ⊆ K ⊆ (n + 1)n1/2Bn

2 . We
now define the sequence of bodies Ki = 2iBn

2 ∩K, for i ∈ {0, . . . , T}, T = O(logn), where
K0 = Bn

2 and KT = K. For each Ki, i ∈ [T − 1], we will compute a 3−n approximate KB
point ci for Ki from a 3−n-approximate KB point ci−1 for Ki−1. Finally, in the last step,
from KT−1 to KT , we amplify this to (1 + ε)−n approximation. We note that we may start
with c0 = 0, since this is the center of symmetry for K0 = Bn

2 . Furthermore, at each step,
since the volume voln(Ki) ≤ 2nvoln(Ki−1), the KB value of ci−1 with respect to Ki, i ∈ [T ],
is at least 2−n · 3−n · 2−n = 12−n.

To compute ci starting from ci−1, we perform the following improvement steps: from our
current solution for ci (initialized at ci−1 during the first iteration), we begin by building a
thin-covering lattice L with basis B for Ki[ci] (note Ki[ci] is symmetric). We then construct
a covering of (1/2)(Ki + ci) by (ε/2)Ki[ci], whose centers are computed by enumerating
S = (1/2)((Ki + εKi[ci] + ci) ∩ εL) via Schnorr-Euchner enumeration using B. We then
replace ci by the element in S (noting that S ⊆ Ki) of largest approximate KB value, where
for each x ∈ S we approximate voln(Ki[x]) to within (1 + ε/10)n using the volume algorithm
for symmetric convex bodies. The concavity of the function voln(K[x])1/n will allow us to
show that at each step, we improve the objective value by essentially a (1 + cε)n factor.
Hence O(1/ε) iterations suffice to construct a near optimal solution.
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