We introduce and study the \emph{Lattice Distortion Problem} (LDP). LDP asks
how "similar" two lattices are. I.e., what is the minimal distortion of a
linear bijection between the two lattices? LDP generalizes the Lattice
Isomorphism Problem (the lattice analogue of Graph Isomorphism), which simply
asks whether the minimal distortion is one.
As our first contribution, we show that the distortion between any two
lattices is approximated up to a nO(logn) factor by a simple function of
their successive minima. Our methods are constructive, allowing us to compute
low-distortion mappings that are within a 2O(nloglogn/logn) factor
of optimal in polynomial time and within a nO(logn) factor of optimal in
singly exponential time. Our algorithms rely on a notion of basis reduction
introduced by Seysen (Combinatorica 1993), which we show is intimately related
to lattice distortion. Lastly, we show that LDP is NP-hard to approximate to
within any constant factor (under randomized reductions), by a reduction from
the Shortest Vector Problem.Comment: This is the full version of a paper that appeared in ESA 201