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Abstract
An important theorem of Banaszczyk (Random Structures & Algorithms ‘98) states that for any
sequence of vectors of `2 norm at most 1/5 and any convex body K of Gaussian measure 1/2
in Rn, there exists a signed combination of these vectors which lands inside K. A major open
problem is to devise a constructive version of Banaszczyk’s vector balancing theorem, i.e. to find
an efficient algorithm which constructs the signed combination.

We make progress towards this goal along several fronts. As our first contribution, we show an
equivalence between Banaszczyk’s theorem and the existence of O(1)-subgaussian distributions
over signed combinations. For the case of symmetric convex bodies, our equivalence implies the
existence of a universal signing algorithm (i.e. independent of the body), which simply samples
from the subgaussian sign distribution and checks to see if the associated combination lands
inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which
allows us to reduce to the case where the body is symmetric.

As our second main contribution, we show that the above framework can be efficiently im-
plemented when the vectors have length O(1/

√
logn), recovering Banaszczyk’s results under

this stronger assumption. More precisely, we use random walk techniques to produce the re-
quired O(1)-subgaussian signing distributions when the vectors have length O(1/

√
logn), and

use a stochastic gradient ascent method to implement the recentering procedure for asymmetric
bodies.
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1 Introduction

Given a family of sets S1, . . . , Sm over a universe U = [n], the goal of combinatorial
discrepancy minimization is to find a bi-coloring χ : U → {−1, 1} such that the discrepancy,
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XX:2 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

i.e. the maximum imbalance, maxj∈[m] |
∑
i∈Sj

χ(i)| is made as small as possible. Discrepancy
theory, where discrepancy minimization plays a major role, has a rich history of applications
in computer science as well as mathematics, and we refer the reader to [19, 10, 11] for a
general exposition.

A beautiful question regards the discrepancy of sparse set systems, i.e. set systems in
which each element appears in at most t sets. A classical theorem of Beck and Fiala [8] gives
an upper bound of 2t− 1 in this setting. They also conjectured an O(

√
t) bound, which if

true would be tight. An improved Beck-Fiala bound of 2t − log∗ t was given by Bukh [9],
where log∗ t is the iterated logarithm function in base 2. Recently, it was shown by Ezra and
Lovett [14] that a bound of O(

√
t log t) holds with high probability when m ≥ n and each

element is assigned to t sets uniformly at random. The best general bounds having sublinear
dependence in t currently depend on n or m. Srinivasan [25] used Beck’s partial coloring
method [7] to give a bound of O(

√
t log min{n,m}). Using techniques from convex geometry,

Banaszczyk [2] proved a general result on vector balancing (stated below) which implies an
O(

√
t log min{n,m}) bound.

The proofs of both Srinivasan’s and Banaszczyk’s bounds were non-constructive, that is,
they provided no efficient algorithm to construct the guaranteed colorings, short of exhaustive
enumeration. In the last 6 years, tremendous progress has been made on the question of
matching classical discrepancy bounds algorithmically. Currently, essentially all discrepancy
bounds proved using the partial coloring method, including Srinivasan’s, have been made
constructive [4, 18, 15, 22, 13]. Constructive versions of Banaszczyk’s result have, however,
proven elusive until very recently. In recent work [5], the first and second named authors
jointly with Bansal gave a constructive algorithm for recovering Banaszczyk’s bound in
the Beck-Fiala setting as well as the more general Komlós setting. However, finding a
constructive version of Banaszczyk’s more general vector balancing theorem, which has
further applications in approximating hereditary discrepancy, remains an open problem. This
theorem is stated as follows:

I Theorem 1 (Banaszczyk [2]). Let v1, . . . , vn ∈ Rm satisfy ‖vi‖2 ≤ 1/5. Then for any
convex body K ⊆ Rm of Gaussian measure at least 1/2, there exists χ ∈ {−1, 1}n such that∑n

i=1 χivi ∈ K.

The lower bound 1/2 on the Gaussian measure of K is easily seen to be tight. In particular,
if all the vectors are equal to 0, we must have that 0 ∈ K. If we allow Gaussian measure
< 1/2, then K = {x ∈ Rn : x1 ≥ ε}, for ε > 0 small enough, is a clear counterexample.
On the other hand, it is not hard to see that if K has Gaussian measure 1/2 then 0 ∈ K.
Otherwise, there exists a halfspace H containing K but not 0, where H clearly has Gaussian
measure less than 1/2.

Banaszczyk’s theorem gives the best known bound for the notorious Komlós conjecture [24],
a generalization of the Beck-Fiala conjecture, which states that for any sequence of vectors
v1, . . . , vn ∈ Rm of `2 norm at most 1, there exists χ ∈ {−1, 1}n such that ‖

∑n
i=1 χivi‖∞ is

a constant independent of m and n. In this context, Banaszczyk’s theorem gives a bound
of O(

√
logm), because an O(

√
logm) scaling of the unit ball of `m∞ has Gaussian measure

1/2. Banaszczyk’s theorem together with estimates on the Gaussian measure of slices of
the `m∞ ball due to Barthe, Guedon, Mendelson, and Naor [6] give a bound of O(

√
log d),

where d ≤ min{m,n} is the dimension of the span of v1, . . . , vn. A well-known reduction
(see e.g. Lecture 9 in [24]), shows that this bound for the Komlós problem implies an
O(

√
t log min{m,n}) bound in the Beck-Fiala setting.

While the above results only deal with the case of K being a cube, Banaszczyk’s theorem
has also been applied to other cases. It was used in [3] to give the best known bound on
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the Steinitz conjecture. In this problem, the input is a set of vectors v1, . . . , vn in Rm of
norm at most one and summing to 0. The aim is to find a permutation π : [n] → [n] to
minimise the maximum sum prefix of the vectors rearranged according to π i.e. to minimize
maxk∈[n] ‖

∑k
i=1 vπ(i)‖. The Steinitz conjecture is that this bound should always be O(

√
m),

irrespective of the number of vectors, and using the vector balancing theorem Banaszczyk
proved a bound of O(

√
m+

√
logn) for `2 norm.

More recently, Banaszczyk’s theorem was applied to more general symmetric polytopes
in Nikolov and Talwar’s approximation algorithm [21] for a hereditary notion of discrepancy.
Hereditary discrepancy is defined as the maximum discrepancy of any restriction of the
set system to a subset of the universe. In [21] it was shown that an efficiently computable
quantity, denoted γ2, bounds hereditary discrepancy from above and from below for any
given set system, up to polylogarithmic factors. For the upper bound they used Banaszczyk’s
theorem for a natural polytope associated with the set system. However, since there is no
known algorithmic version of Banaszczyk’s theorem for a general body, it is not known how
to efficiently compute colorings that achieve the discrepancy upper bounds in terms of γ2.
The recent work on algorithmic bounds in the Komlós setting does not address this more
general problem.

Banaszczyk’s proof of Theorem 1 follows an ingenious induction argument, which folds
the effect of choosing the sign of vn into the body K. The first observation is that finding a
point of the set

∑n
i=1 {−vi, vi} inside K is equivalent to finding a point of

∑n−1
i=1 {−vi, vi} in

K − vn ∪K + vn. Inducting on this set is not immediately possible because it may no longer
be convex. Instead, Banaszczyk shows that a convex subset K ∗ vn of (K − vn) ∪ (K + vn)
has Gaussian measure at least that of K, as long as K has measure at least 1/2, which allows
him to induct on K ∗ vn. In the base case, he needs to show that a convex body of Gaussian
measure at least 1/2 must contain the origin, but this fact follows easily from the hyperplane
separation theorem, as indicated above. While extremely elegant, Banaszczyk’s proof can be
seen as relatively mysterious as it does not seem to provide any tangible insights as to what
the colorings look like.

1.1 Our Results
As our main contribution, we help demystify Banaszczyk’s theorem, by showing that it is
equivalent, up to a constant factor in the length of the vectors, to the existence of certain
subgaussian coloring distributions. Using this equivalence, as our second main contribution,
we give an efficient algorithm that recovers Banaszczyk’s theorem up to a O(

√
log min{m,n})

factor for all convex bodies. This improves upon the best previous algorithms of Rothvoss [22],
Eldan and Singh [13], which only recover the theorem for symmetric convex bodies up to a
O(log min{m,n}) factor.

As a major consequence of our equivalence, we show that for any sequence v1, . . . , vn ∈ Rm
of short enough vectors there exists a probability distribution χ ∈ {−1, 1}n over colorings
such that, for any symmetric convex body K ⊆ Rm of Gaussian measure at least 1/2, the
random variable

∑n
i=1 χivi lands inside K with probability at least 1/2. Importantly, if

such a distribution can be efficiently sampled, we immediately get a universal sampler for
constructing Banaszczyk colorings for all symmetric convex bodies (we remark that the recent
work of [5] constructs a more restricted form of such distributions). Using random walk
techniques, we show how to implement an approximate version of this sampler efficiently,
which guarantees the same conclusion when the vectors are of length O(1/

√
log min{m,n}).

We provide more details on these results in Section 2
To extend our results to asymmetric convex bodies, we develop a novel recentering

APPROX/RANDOM’16
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procedure and a corresponding efficient implementation which allows us to reduce the
asymmetric setting to the symmetric one. After this reduction, a slight extension of the
aforementioned sampler again yields the desired colorings. We note that our recentering
procedure in fact depends on the target convex body, and hence our algorithms are no longer
universal in this setting. We provide more details on these results in Section 3.

Interestingly, we additionally show that this procedure can be extended to yield a
completely different coloring algorithm, i.e. not using the sampler, achieving the same
O(

√
log min{m,n}) approximation factor. Surprisingly, the coloring outputted by this

procedure is deterministic (its implementation however is not) and has a natural analytic
description, which may be of independent interest.

Before we continue with a more detailed description of our results, we begin with some
terminology and a well-known reduction. Given a set of vectors v1, . . . , vn ∈ Rm, we shall
call a property hereditary if it holds for all subsets of the vectors. We note that Banaszczyk’s
vector balancing bounds restricted to a set of vectors are hereditary, since a bound on the
maximum `2 norm of the vectors is hereditary. We shall say that a property of colorings holds
in the linear setting, if when given any shift t ∈

∑n
i=1[−vi, vi]

def= {
∑n
i=1 λivi : λ ∈ [−1, 1]n},

one can find a coloring (or distribution on colorings) χ ∈ {−1, 1}n such that
∑n
i=1 χivi − t

satisfies the property. It is well-known that Banaszczyk’s theorem also extends by standard
arguments to the linear setting after reducing the `2 norm bound from 1/5 to 1/10 (a factor
2 drop). This follows, for example, from the general inequality between hereditary and linear
discrepancy proved by Lovasz, Spencer, and Vesztergombi [16].

All the results in this work will in fact hold in the linear setting. When treating
the linear setting, it is well known that one can always reduce to the case where the
vectors v1, . . . , vn are linearly independent, and in our setting, when m = n. In particular,
assume we are given some shift t ∈

∑n
i=1[−vi, vi] and that v1, . . . , vn are not linearly

independent. Then, using a standard linear algebraic technique, we can find a “fractional
coloring” x ∈ [−1, 1]n such that

∑n
i=1 xivi = t, and the vectors (vi : i ∈ Ax) are linearly

independent, where Ax
def= {i : xi ∈ (−1, 1)} is the set of fractional coordinates (see Lecture 5

in [24], or Chapter 4 in [19]). We can think of this as a reduction to coloring the linearly
independent vectors indexed by Ax. Specifically, given x as above, define the lifting function
Lx : [−1, 1]Ax → [−1, 1]n by

Lx(z)i =
{
zi : i ∈ Ax
xi : i ∈ [n] \Ax

, ∀i ∈ [n] . (1)

This map takes any coloring χ ∈ {−1, 1}Ax and “lifts” it to a full coloring Lx(χ) ∈ {−1, 1}n.
It also satisfies the property that Lx(χ) − t =

∑
i∈Ax

χivi −
∑
i∈Ax

xivi. So, if we can
find a coloring χ ∈ {−1, 1}Ax such that

∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ K, then we would
have Lx(χ) − t ∈ K as well. Moreover, if we define W as the span of (vi : i ∈ Ax), then∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ K if and only if
∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ K ∩W , so we can
replace K with K ∩W , and work entirely inside W . For convex bodies K with Gaussian
measure at least 1/2, the central section K ∩W has Gaussian measure that is at least as
large, so we have reduced the problem to the case of |Ax| linearly independent vectors in an
|Ax|-dimensional space (details are given in the full version of this paper.) We shall thus, for
simplicity, state all our results in the setting where the vectors v1, . . . , vn are in Rn and are
linearly independent.
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2 Symmetric Convex Bodies and Subgaussian Distributions

In this section, we detail the equivalence of Banaszczyk’s theorem restricted to symmetric
convex bodies with the existence of certain subgaussian distributions. We begin with the
main theorem of this section, which we note holds in a more general setting than Banaszczyk’s
result.

I Theorem 2 (Main Equivalence). Let T ⊆ Rn be a finite set. Then, the following parameters
are equivalent up to a universal constant factor independent of T and n:
1. The minimum sb > 0 such that for any symmetric convex body K ⊆ Rn of Gaussian

measure at least 1/2, we have that T ∩ sbK 6= ∅.
2. The minimum sg > 0 such that there exists an sg-subgaussian random variable Y supported

on T .

We recall that a random vector Y ∈ Rn is s-subgaussian, or subgaussian with parameter
s, if for any unit vector θ ∈ Sn−1 and t ≥ 0, Pr[|〈Y, θ〉| ≥ t] ≤ 2e−(t/s)2/2. In words, Y is
subgaussian if all its 1-dimensional marginals satisfy the same tail bound as the 1-dimensional
Gaussian of mean 0 and standard deviation s.

To apply the above to discrepancy, we set T =
∑n
i=1{−vi, vi}, i.e. all signed combinations

of the vectors v1, . . . , vn ∈ Rn. In this context, Banaszczyk’s theorem directly implies
that sb ≤ 5 maxi∈[n] ‖vi‖2, and hence by our equivalence that sg = O(1) maxi∈[n] ‖vi‖2.
Furthermore, the above extends to the linear setting letting T =

∑n
i=1{−vi, vi} − t, for

t ∈
∑n
i=1[−vi, vi], because, as mentioned above, Banaszczyk’s theorem extends to this setting

as well.
The existence of the universal sampler claimed in the previous section is in fact the proof

that sb = O(sg) in the above Theorem. In particular, it follows directly from the following
lemma.

I Lemma 3. Let Y ∈ Rn be an s-subgaussian random variable. There exists an absolute
constant c > 0, such for any symmetric convex body K ⊆ Rn of Gaussian measure at least
1/2, Pr[Y ∈ s · cK] ≥ 1/2.

Here, if Y is the sg-subgaussian distribution supported on
∑n
i=1{−vi, vi} − t as above,

we simply let χ denote the random variable such that Y =
∑n
i=1 χivi − t. That χ now yields

the desired universal distribution on colorings is exactly the statement of the lemma.
As a consequence of the above, we see that to recover Banaszczyk’s theorem for symmetric

convex bodies, it suffices to be able to efficiently sample from an O(1)-subgaussian distribution
over sets of the type

∑n
i=1{−vi, vi} − t, for t ∈

∑n
i=1[−vi, vi], when v1, . . . , vn ∈ Rn are

linearly independent and have `2 norm at most 1. Here we rely on homogeneity, that is, if Y is
an s-subgaussian random variable supported on

∑n
i=1{−vi, vi}− t then αY is αs-subgaussian

on
∑n
i=1{−αvi, αvi} − αt, for α > 0.

The proof of Lemma 3 follows relatively directly from well-known convex geometric
estimates combined with Talagrand’s majorizing measure theorem [26] (see also [27]), which
gives a powerful characterization of the supremum of any Gaussian process.

Unfortunately, Lemma 3 does not hold for asymmetric convex bodies. In particular, if
Y = −e1, the negated first standard basis vector, and K = {x ∈ Rn : x1 ≥ 0}, the conclusion
is clearly false no matter how much we scale K, even though Y is O(1)-subgaussian and K
has Gaussian measure 1/2. One may perhaps hope that the conclusion still holds if we ask
for either Y or −Y to be in s · cK in the asymmetric setting, though we do not know how to
prove this. We note however that this only makes sense when the support of Y is symmetric,
which does not necessarily hold in the linear discrepancy setting.

APPROX/RANDOM’16



XX:6 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

We now describe the high level idea of the proof for the reverse direction, namely, that
sg = O(sb). For this purpose, we show that the existence of a O(sb)-subgaussian distribution
on T can be expressed as a two player zero-sum game, i.e. the first player chooses a distribution
on T and the second player tries to find a non-subgaussian direction. Here the value of the
game will be small if and only if the O(sb)-subgaussian distribution exists. To bound the value
of the game, we show that an appropriate “convexification” of the space of subgaussianity
tests for the second player can be associated with symmetric convex bodies of Gaussian
measure at least 1/2. From here, we use von Neumann’s minimax principle to switch the first
and second player, and deduce that the value of the game is bounded using the definition of
sb.

2.1 The Random Walk Sampler
From the algorithmic perspective, it turns out that subgaussianity is a very natural property
in the context of random walk approaches to discrepancy minimization. Our results can
thus be seen as a good justification for the random walk approaches to making Banaszczyk’s
theorem constructive.

At a high level, in such approaches one runs a random walk over the coordinates of a
“fractional coloring” χ ∈ [−1, 1]n until all the coordinates hit either 1 or −1. The steps of such
a walk usually come from Gaussian increments (though not necessarily spherical), which try
to balance the competing goals of keeping discrepancy low and moving the fractional coloring
χ closer to {−1, 1}n. Since a sum of small centered Gaussian increments is subgaussian with
the appropriate parameter, it is natural to hope that the output of a correctly implemented
random walk is subgaussian. Our main result in this setting is that this is indeed possible to
a limited extent, with the main caveat being that the walk’s output will not be “subgaussian
enough” to fully recover Banaszczyk’s theorem.

I Theorem 4. Let v1, . . . , vn ∈ Rn be vectors of `2 norm at most 1 and let t ∈
∑n
i=1[−vi, vi].

Then, there is an expected polynomial time algorithm which outputs a random coloring
χ ∈ {−1, 1}n such that the random variable

∑n
i=1 χivi − t is O(

√
logn)-subgaussian.

To achieve the above sampler, we guide our random walk using solutions to the so-
called vector Kómlos program, whose feasibility was first given by Nikolov [20], and show
subgaussianity using well-known martingale concentration bounds. Interestingly, the random
walk’s analysis does not rely on phases, and is instead based on a simple relation between
the walk’s convergence time and the subgaussian parameter. As an added bonus, we also
give a new and simple constructive proof of the feasibility of the vector Kómlos program
which avoids the use of an SDP solver.

Given the results of the previous section, the above random walk is a universal sampler
for constructing the following colorings.

I Corollary 5. Let v1, . . . , vn ∈ Rn be vectors of `2 norm at most 1, let t ∈
∑n
i=1[−vi, vi],

and let K ⊆ Rn be a symmetric convex body of Gaussian measure 1/2 (given by a membership
oracle). Then, there is an expected polynomial time algorithm which outputs a coloring
χ ∈ {−1, 1}n such that

∑n
i=1 χivi − t ∈ O(

√
logn)K.

As mentioned previously, the best previous algorithms in this setting are due to Rothvoss [22],
Eldan and Singh [13], which find a signed combination inside O(logn)K. Furthermore, these
algorithms are not universal, i.e. they heavily depend on the body K. We note that these
algorithms are in fact tailored to find partial colorings inside a symmetric convex body K of
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Gaussian measure at least 2−cn, for c > 0 small enough, a setting in which our sampler does
not provide any guarantees.

We now recall prior work on random walk based discrepancy minimization. The random
walk approach was pioneered by Bansal [4], who used a semidefinite program to guide the
walk and gave the first efficient algorithm matching the classic O(

√
n) bound of Spencer [23]

for the combinatorial discrepancy of set systems satisfying m = O(n). Later, Lovett and
Meka [18] provided a greatly simplified walk, removing the need for the semidefinite program,
which recovered the full power of Beck’s entropy method for constructing partial colorings.
Harvey, Schwartz, and Singh [15] defined another random walk based algorithm, which,
unlike previous work and similarly to our algorithm, doesn’t explicitly use phases or produce
partial colorings. The random walks of [18] and [15] both depend on the convex body
K; the walk in [18] is only well-defined in a polytope, while the one in [15] remains well-
defined in any convex body, although the analysis still applies only to the polyhedral setting.
Most directly related to this paper is the recent work [5], which gives a walk that can be
viewed as a randomized variant of the original 2t− 1 Beck-Fiala proof. This walk induces
a distribution χ ∈ {−1, 1}n on colorings for which each coordinate of the output

∑n
i=1 χivi

is O(1)-subgaussian. From the discrepancy perspective, this gives a sampler which finds
colorings inside any axis parallel box of Gaussian measure at least 1/2 (and their rotations,
though not in a universal manner), matching Banaszczyk’s result for this class of convex
bodies.

3 Asymmetric Convex Bodies

In this section, we explain how our techniques extend to the asymmetric setting. The main
difficulty in the asymmetric setting is that one cannot hope to increase the Gaussian mass of
an asymmetric convex body by simply scaling it. In particular, if we take K ⊆ Rn to be a
halfspace through the origin, e.g. {x ∈ Rn : x1 ≥ 0}, then K has Gaussian measure exactly
1/2 but sK = K for all s > 0. At a technical level, the lack of any measure increase under
scaling breaks the proof of Lemma 3, which is crucial for showing that subgaussian coloring
distributions produce combinations that land inside K.

The main idea to circumvent this problem will be to reduce to a setting where the mass
of K is “symmetrically distributed” about the origin, in particular, when the barycenter of
K under the induced Gaussian measure is at the origin. For such a body K, we show that
a constant factor scaling of K ∩ −K also has Gaussian mass at least 1/2, yielding a direct
reduction to the symmetric setting.

To achieve this reduction, we will use a novel recentering procedure, which will both
carefully fix certain coordinates of the coloring as well as shift the body K to make its mass
more “symmetrically distributed”. The guarantees of this procedure are stated below:

I Theorem 6 (Recentering Procedure). Let v1, . . . , vn ∈ Rn be linearly independent, t ∈∑n
i=1[−vi, vi], and K ⊆ Rn be a convex body of Gaussian measure at least 1/2. Then, there

exists a fractional coloring x ∈ [−1, 1]n, such that for p =
∑n
i=1 xivi − t, Ax = {i ∈ [n] : xi ∈

(−1, 1)} and W = span(vi : i ∈ Ax), the following holds:
1. p ∈ K.
2. The Gaussian measure of (K − p) ∩W on W is at least the Gaussian measure of K.
3. The barycenter of (K − p) ∩W is at the origin, i.e.

∫
(K−p)∩W ye−‖y‖

2/2dy = 0.

By convention, if the procedure returns a full coloring x ∈ {−1, 1}n (in which case, since
p ∈ K, we are done), we shall treat conditions 2 and 3 as satisfied, even though W = {0}. At

APPROX/RANDOM’16
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a high level, the recentering procedure allows us to reduce the initial vector balancing problem
to one in a possibly lower dimension with respect to “well-centered” convex body of no
smaller Gaussian measure, and in particular, of Gaussian measure at least 1/2. Interestingly,
as mentioned earlier in the introduction, the recentering procedure can also be extended
to yield a full coloring algorithm. We explain the high level details of its implementation
together with this extension in the next subsection.

To explain how to use the fractional coloring x from Theorem 6 to get a useful reduction,
recall the lifting function Lx : [−1, 1]Ax → [−1, 1]n defined in (1). We reduce the initial
vector balancing problem to the problem of finding a coloring χ ∈ {−1, 1}Ax such that∑

i∈Ax
χivi −

∑
i∈Ax

xivi ∈ (K − p) ∩ W (note that
∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ W by
construction). Then we can lift this coloring to Lx(χ), which satisfies∑

i∈Ax

χivi −
∑
i∈Ax

xivi ∈ (K − p) ∩W ⇔
n∑
i=1

Lx(χ)ivi − t ∈ K.

From here, the guarantee that K ′ def= (K − p) ∩W has Gaussian measure at least 1/2
and barycenter at the origin allows a direct reduction to the symmetric setting. Namely, we
can replace K ′ by the symmetric convex body K ′ ∩ −K ′ without losing “too much” of the
Gaussian measure of K ′. This is formalized by the following extension of Lemma 3, which
directly implies a reduction to subgaussian sampling as in section 2.

I Lemma 7. Let Y ∈ Rn be an s-subgaussian random variable. There exists an absolute
constant c > 0, such for any convex body K ⊆ Rn of Gaussian measure at least 1/2 and
barycenter at the origin, Pr[Y ∈ s · c(K ∩ −K)] ≥ 1/2.

In particular, if there exists a distribution over colorings χ ∈ {−1, 1}Ax such that∑
i∈Ax

χivi −
∑
i∈Ax

xivi as above is 1/c-subgaussian, Lemma 7 implies that the random
signed combination lands inside K ′ with probability at least 1/2. Thus, the asymmetric
setting can be effectively reduced to the symmetric one, as claimed.

Crucially, the recentering procedure in Theorem 6 can be implemented in probabilistic
polynomial time if one relaxes the barycenter condition from being exactly 0 to having “small”
norm. Furthermore, the estimate in Lemma 7 will be robust to such perturbations. Thus, to
constructively recover the colorings in the asymmetric setting, it will still suffice to be able
to generate good subgaussian coloring distributions.

Combining the sampler from Theorem 4 together with the recentering procedure, we
constructively recover Banaszczyk’s theorem for general convex bodies up to a O(

√
logn)

factor.

I Theorem 8 (Weak Constructive Banaszczyk). There exists a probabilistic polynomial time
algorithm which, on input a linearly independent set of vectors v1, . . . , vn ∈ Rn of `2 norm
at most c/

√
logn, c > 0 small enough, t ∈

∑n
i=1[−vi, vi], and a (not necessarily symmetric)

convex body K ⊆ Rn of Gaussian measure at least 1/2 (given by a membership oracle),
computes a coloring χ ∈ {−1, 1}n such that with high probability

∑n
i=1 χivi − t ∈ K.

As far as we are aware, the above theorem gives the first algorithm to recover Banaszczyk’s
result for asymmetric convex bodies under any non-trivial restriction. In this context, we
note that the algorithm of Eldan and Singh [13] finds “relaxed” partial colorings, i.e. where
the fractional coordinates of the coloring are allowed to fall outside [−1, 1], and the resulting
vector lies inside an n-dimensional convex body of Gaussian measure at least 2−cn. However,
it is unclear how one could use such partial colorings to recover the above result, even with a
larger approximation factor.
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3.1 The Recentering Procedure
In this section, we describe the details of the recentering procedure as well as its extension
to full colorings, which produces deterministic colorings matching the guarantees of Theo-
rem 8. We provide only its abstract instantiation here, leaving a detailed description of its
implementation to the full version of the paper.

Before we begin, we give a more geometric view of the vector balancing problem and
the recentering procedure, which help clarify the exposition. Let v1, . . . , vn ∈ Rn be linearly
independent vectors and t ∈

∑n
i=1[−vi, vi]. Given the target body K ⊆ Rn of Gaussian

measure at least 1/2, we can restate the vector balancing problem geometrically as that of
finding a vertex of the parallelepiped P =

∑n
i=1[−vi, vi]− t lying inside K. Here, the choice

of t ensures that 0 ∈ P . Note that this condition is necessary, since otherwise there exists a
halfspace separating P from 0 having Gaussian measure at least 1/2.

Recall now that in the linear setting, and using this geometric language, Banaszczyk’s
theorem implies that if P contains the origin, and maxi∈[n] ‖vi‖2 ≤ 1/10 (which we do not
need to assume for the validity of the recentering procedure), then any convex body of
Gaussian measure at least 1/2 contains a vertex of P . Thus, for our given target body K,
we should make our situation better by replacing P and K by P − q and K − q respectively,
if q ∈ P is a shift such that K − q has higher Gaussian measure than K. In particular, given
the symmetry of Gaussian measure, one would intuitively expect that if the Gaussian mass
of K is not symmetrically distributed around 0, there should be a shift of K which increases
its Gaussian measure.

In the current language, fixing a color χi ∈ {−1, 1} for vector vi, corresponds to restricting
ourselves to finding a vertex in the facet F = χivi +

∑
j 6=i[−vj , vj ]− t of P lying inside K.

Again intuitively, restricting to a facet of P should improve our situation if the Gaussian
measure of the corresponding slice of K in the lower dimension is larger than that of K. To
make this formal, note that when inducting on a facet F of P (which is an n− 1 dimensional
parallelepiped), we must choose a center q ∈ F to serve as the new origin in the lower
dimensional space. Precisely, this can be expressed as inducting on the parallelepiped F − q
and shifted slice (K − q) ∩ span(F − q) of K, using the n− 1 dimensional Gaussian measure
on span(F − q).

With the above viewpoint, one can restate the goal of the recentering procedure as that
of finding a point q ∈ P ∩ K, such that smallest face F of P containing q, satisfies that
(K − q)∩ span(F − q) has its barycenter at the origin and Gaussian measure no smaller than
that of K. Recall that as long as (K − q) ∩ span(F − q) has Gaussian measure at least 1/2,
we are guaranteed that 0 ∈ K − q ⇒ q ∈ K. With this geometry in mind, we implement the
recentering procedure as follows:

Compute q ∈ P so that the Gaussian mass of K − q is maximized. If q is on the
boundary of P , letting F denote a facet of P containing q, induct on F − q and the slice
(K − q) ∩ span(F − q) as above. If q is in the interior of P , replace P and K by P − q and
K − q, and terminate.

We now explain why the above achieves the desired result. First, if the maximizer q is
in a face F of P , then a standard convex geometric argument reveals that the Gaussian
measure of (K − q) ∩ span(F − q) is no smaller than that of K − q, and in particular, no
smaller than that of K. Thus, in this case, the recentering procedure fixes a color for “free”.
In the second case, if q is in the interior of P , then a variational argument gives that the
barycenter of K − q under the induced Gaussian measure must be at the origin, namely,∫
K−q xe

−x2/2dx = 0.
To conclude this section, we explain how to extend the recentering procedure to directly

APPROX/RANDOM’16
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produce a deterministic coloring satisfying Theorem 8. For this purpose, we shall assume that
v1, . . . , vn have length at most c/

√
logn, for a small enough constant c > 0. To begin, we run

the recentering procedure as above, which returns P and K, with K having its barycenter at
the origin. We now replace P,K by a joint scaling αP, αK, for α > 0 a large enough constant,
so that αK has Gaussian mass at least 3/4. At this point, we run the original recentering
procedure again with the following modification: every time we get to the situation where K
has its barycenter at the origin, induct on the facet of P closest to the origin. More precisely,
in this situation, compute a point p on the boundary of P closest to the origin, and, letting
F denote the facet containing p, induct on F − p and (K − p) ∩ span(F − p). At the end,
return the final found vertex.

Notice that, as claimed, the coloring (i.e. vertex) returned by the algorithm is indeed
deterministic. The reason the above algorithm works is the following. While we cannot
guarantee, as in the original recentering procedure, that the Gaussian mass of (K − p) ∩
span(F − p) does not decrease, we can instead show that it decreases only very slowly. In
particular, we use the bound of O(1/

√
logn) on the length of the vectors v1, . . . , vn to show

that every time we induct, the Gaussian mass drops by at most a 1 − c/n factor. More
generally, if the vectors had length at most d > 0, for d small enough, the drop would be of
the order 1− ce−1/(cd)2 , for some constant c > 0. Since we “massage” K to have Gaussian
mass at least 3/4 before applying the modified recentering algorithm, this indeed allows to
induct n times while keeping the Gaussian mass above 1/2, which guarantees that the final
vertex is in K. To derive the bound on the rate of decrease of Gaussian mass, we prove a
new inequality on the Gaussian mass of sections of a convex body near the barycenter, which
may be of independent interest. The new inequality is stated below:

I Theorem 9. Let K ⊆ Rn be a convex body with Gaussian measure γn(K) = α ≥ 3/5 such
that its barycenter, b satisfies ‖b‖2 ≤ η, for η > 0 small enough. For θ ∈ Sn−1 and a ∈ R,
let Kθ

a = (K − aθ) ∩ {x ∈ Rn : 〈θ, x〉 = 0}. Then, there exists universal constants a0, c > 0,
such that for |a| ≤ a0, we have that

γn−1(Kθ
a) ≥ (α− cη)(1− e−

1
100a2

4
√

2π
).

As a final remark, we note that unlike the subgaussian sampler, the recentering procedure
is not scale invariant. Namely, if we jointly scale P and K by some factor α, the output
of the recentering procedure will not be an α-scaling of the output on the original K and
P , as Gaussian measure is not homogeneous under scalings. Thus, one must take care to
appropriately normalize P and K before applying the recentering procedure to achieve the
desired results.

We now give the high level overview of our recentering step implementation. The first
crucial observation in this context, is that the task of finding t ∈ P maximizing the Gaussian
measure of K− t is in fact a convex program. More precisely, the objective function (Gaussian
measure of K− t) is a logconcave function of t and the feasible region P is convex. Hence, one
can hope to apply standard convex optimization techniques to find the desired maximizer.

It turns out however, that one can significantly simplify the required task by noting that
the recentering strategy does not in fact necessarily need an exact maximizer, or even a
maximizer in P . To see this, note that if p is a shift such that K − p has larger Gaussian
measure than K, then by logconcavity the shifts K−αp, 0 < α ≤ 1, also have larger Gaussian
measure. Thus, if a we find a shift p /∈ P with larger Gaussian measure, letting αp be the
intersection point with the boundary ∂P , we can induct on the facet of P − αp containing 0
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and the corresponding slice of K − αp just as before. Given this, we can essentially “ignore”
the constraint p ∈ P and the treat the optimization problem as unconstrained.

This last observation will allow us to use the following simple gradient ascent strategy.
Precisely, we simply take steps in the direction of the gradient until either we pass through
a facet of P or the gradient becomes “too small”. As alluded to previously, the gradient
will exactly equal a fixed scaling of the barycenter of K − p, p the current shift, under the
induced Gaussian measure. Thus, once the gradient is small, the barycenter will be very
close to the origin, which will be good enough for our purposes. The last nontrivial technical
detail is how to efficiently estimate the barycenter, where we note that the barycenter is the
expectation of a random point inside K − p. For this purpose, we simply take an average of
random samples from K − p, where we generate the samples using standard random walk
samplers for logconcave distributions over convex bodies [1, 17, 12].

Conclusion and Open Problems

In conclusion, we have shown a tight connection between the existence of subgaussian
coloring distributions and Banaszczyk’s vector balancing theorem. Furthermore, we make
use of this connection to constructively recover a weaker version of this theorem. The main
open problem we leave is thus to fully recover Banaszczyk’s result. As explained above,
this reduces to finding a distribution on colorings such that the output random signed
combination is O(1)-subgaussian, when the input vectors have `2 norm at most 1. We believe
this approach is both attractive and feasible, especially given the recent work [5], which
builds a distribution on colorings for which each coordinate of the output random signed
combination is O(1)-subgaussian.
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