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Abstract

We present a substantially more efficient variant, both in terms of running time and size
of preprocessing advice, of the algorithm by Liu, Lyubashevsky, and Micciancio [LLM06] for
solving CVPP (the preprocessing version of the Closest Vector Problem, CVP) with a distance
guarantee. For instance, for any α < 1/2, our algorithm finds the (unique) closest lattice point
for any target point whose distance from the lattice is at most α times the length of the shortest
nonzero lattice vector, requires as preprocessing advice only N ≈ Õ(n exp(α2n/(1 − 2α)2))

vectors, and runs in time Õ(nN).
As our second main contribution, we present reductions showing that it suffices to solve

CVP, both in its plain and preprocessing versions, when the input target point is within some
bounded distance of the lattice. The reductions are based on ideas due to Kannan [Kan87] and
a recent sparsification technique [DK13]. Combining our reductions with the LLM algorithm
gives an approximation factor of O(n/

√
log n) for search CVPP, improving on the previous

best of O(n1.5) due to Lagarias, Lenstra, and Schnorr [LLS90]. When combined with our im-
proved algorithm we obtain, somewhat surprisingly, that only O(n) vectors of preprocessing
advice are sufficient to solve CVPP with (the only slightly worse) approximation factor of O(n).

1 Introduction

A lattice is the set of all integer combinations of n linearly independent vectors v1, . . . , vn in Rn.
These vectors are known as a basis of the lattice. In the last couple of decades, lattices became a cen-
tral object of investigation in theoretical computer science due to their wide range of algorithmic
and cryptographic applications.

The two most fundamental lattice problems are the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). Given an n-dimensional lattice L (specified using an arbitrary ba-
sis), the SVP is to find a shortest non-zero vector in L, and, given in addition a target point t ∈ Rn,
the CVP is to find a closest vector to t in L. For their approximation versions, the goal is to com-
pute solutions whose length or distance is within some factor of optimal, and in the associated
decisional versions, one must estimate the length or distance to within the desired factor.

From a computational complexity point of view, lattice problems are quite fascinating. For the
nearly exponential approximation factor of 2O(n log log n/ log n), efficient algorithms are known [LLL82,
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Bab86, Sch87, AKS01, MV13]. On the other hand, for solving the exact problems (or even for
approximating to within poly(n) factors) the best known algorithms run in time 2O(n) [AKS01,
MV13]. It is known that for some c > 0, approximating CVP to within nc/ log log n is NP-hard
(see [DKRS03] as well as [Kho10] and references therein). Under reasonable complexity assump-
tions, SVP is also known to be hard for the same approximation factor [Mic01b, Kho04, HR12].
Finally, for approximation factor

√
n both problems are known to be in NP∩coNP and hence un-

likely to be NP-hard [GG00, AR05]. For an introduction to the area see, e.g., [MG02, Reg10].
In this paper we also consider a natural variant of CVP known as the Closest Vector Problem with

Preprocessing (CVPP). The motivation comes from applications in coding theory and cryptography
where the lattice is often fixed once and for all, and the input only consists of the target point
t. In CVPP, the algorithm is allowed to spend an unlimited amount of time preprocessing the
given lattice and output at the end a polynomial-size description of the lattice. Then, given that
description and a target point t, our goal is to efficiently solve CVP(L, t). As usual, one can
consider either the search or the decision versions.

The computational hardness of CVPP was investigated in a sequence of works [Mic01a, FM04,
Reg04, AKKV11], culminating in a hardness factor of 2log1−ε n for any ε > 0 by Khot, Popat, and
Vishnoi under reasonable complexity assumptions [KPV14]. Behind the latest two hardness re-
sults is a preprocessing version of the PCP theorem.

The situation in terms of positive results, which is the focus of this work, is even more in-
teresting. It follows from the early work of Lagarias, Lenstra, and Schnorr [LLS90] on so-called
Korkine-Zolotarev bases that there exists an n3/2 approximation algorithm for CVPP. Somewhat
surprisingly, prior to this work, their algorithm was still the best known approximation algorithm
for CVPP.

Improved algorithms were known only for the decision variant of CVPP in which the task is
to approximate the distance of the target point to the lattice. An O(n) approximation algorithm
was given in [Reg04] and then improved by Aharonov and Regev [AR05] to an O(

√
n/ log n)

approximation algorithm, a natural approximation factor that seems very difficult to beat. We are
therefore in the (somewhat absurd!) situation that we know that there is a close vector but we
somehow can’t find it! We note that an equivalence between the search and decision versions of
CVP holds for the exact case [MG02], but is not known to hold for the approximate case.

Since the latter algorithm is very natural and closely related to our work, we describe it here
briefly. The main idea is to define for any latticeL ⊂ Rn the periodic Gaussian function f : Rn → R+,
given by

f (t) =
ρ(L+ t)

ρ(L) , (1)

where ρ(A) = ∑x∈A exp(−π‖x‖2). See Figure 1 for an illustration. The algorithm now follows
from two observations. The first is that for points t at distance greater than

√
n from the lattice,

f (t) is essentially zero, whereas for t at distance less than
√

log n, f (t) is non-negligible, so being
able to compute f would suffice to solve the decision problem. The second crucial idea is that
the function f , despite being defined in terms of a sum over infinitely many lattice points, can be
approximated to within any±1/poly(n) by a function with a polynomial-size circuit. Finding that
circuit seems hard, but since it only depends on the lattice, we can do it in the preprocessing phase.
To show that such an estimator exists, they first observe that the Poisson summation formula gives
the identity

f (t) = E
w∼DL∗

[cos(2π〈w, t〉)] , (2)
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Figure 1: The periodic Gaussian function

where w is a vector of the dual lattice L∗ sampled from DL∗ , the so-called discrete Gaussian distri-
bution over L∗. This naturally leads to the definition of the estimator

fW(t) def
=

1
N

N

∑
i=1

cos(2π〈wi, t〉) , (3)

where W = (w1, . . . , wN) ∈ L∗ are i.i.d. samples from DL∗ , which one can show satisfies fW ≈ f
with high probability over the choice of W assuming N is a large enough poly(n). Once the
vectors in W are given as preprocessing advice, computing fW is clearly efficient. This completes
the description of the decision CVPP algorithm from [AR05].

Moving on to the search problem, a natural approach is to perform some sort of hill-climbing
or gradient ascent on the periodic Gaussian function f (using our estimator fW) starting from
the target point. As can be seen in Figure 1, f attains its maxima in lattice points, and so one
would expect this process to converge to the nearest lattice point. Indeed, this is the approach
followed by Liu, Lyubashevsky, and Micciancio [LLM06]: they showed (improving on earlier
work of Klein [Kle00]) how, given the estimator fW , to efficiently find the nearest lattice point
to any target that is within distance O(

√
log n/n) · λ1(L) of the lattice, where λ1(L) denotes the

length of the shortest non-zero vector in L. Notice, however, that this falls short of solving CVPP
since the algorithm is only guaranteed to work for target points that are close to the lattice. This
problem is known as the Bounded Distance Decoding problem (BDD), or BDDP in its preprocessing
version.

Extending these ideas to the search version of CVPP, or even just to BDDP for a larger decoding
radius, has proved to be elusive. The bound O(

√
log n/n) ·λ1(L) arises as a result of the following

tension. On one hand, we would like to choose the width of the Gaussians in f as wide as possible
in order to increase the radius in which f is detectable and in which we can apply gradient ascent.
On the other hand, making them too wide causes “interference” between the various peaks so we
no longer have as clean a picture as in Figure 1. We demonstrate this interference in Section 7 by
presenting a simple example in which f has a local maximum at distance λ1/

√
2 from the lattice

whose value is exponentially close to the global maximum of 1.
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1.1 Our contributions

Solving BDDP by hill climbing. Our main technical contribution, given in Sections 3 and 4,
is an improvement of the hill-climbing algorithm of LLM. While the basic approach is the same,
our algorithm uses a more natural gradient ascent procedure, compared with LLM’s “discrete”
version. Namely, at each step we replace the current point t with an approximation of

t +∇ f (t)/(2π f (t)) . (4)

Letting y be the closest lattice point to t and ignoring the interference coming from other peaks, we
can think of f as exp(−π‖t− y‖2), in which case (4) is easily seen to equal y, our desired output.
For comparison, LLM uses small axis-aligned steps, replacing t with t± δei for some δ > 0 and
i ∈ [n]. Combining our more natural algorithm with a rather detailed analysis of the periodic
Gaussian function f (which is of independent interest, see Section 4.1) and of its estimator fW
(Section 4.2), we obtain improvements on several fronts.

Firstly, we are able in some cases to extend the decoding radius. Namely, instead of
√
(log n)/n ·

λ1(L), we can handle targets at distance of up to Ω(
√

log(1/ε)/ηε(L∗)) for ε = 1/poly(n), or
slightly above the inverse of the smoothing parameter of the dual lattice (see Section 2.3 for the
definition). This is never worse and is sometimes significantly better than the bound in LLM. For
instance, already for Zn, we get distance Ω(1), which is a constant factor of λ1(L), compared with√
(log n)/n in LLM. This improvement is a result of our refined analysis of f , and highlights the

fact that 1/ηε(L∗) is the right measure of the interference between the peaks of f .
A second improvement is in the size of the advice required from preprocessing, which apart

from being inherently interesting, is a good proxy for the efficiency of the algorithm. In LLM, the
advice consisted of an unspecified polynomial number of dual lattice vectors. In our algorithm,
we require only O(n log(1/ε)/

√
ε) dual lattice vectors.

Third, we show that our gradient ascent converges in just two steps (after which we apply
a simple rounding procedure) compared to poly(n) steps for LLM. In both algorithms, the time
complexity of each step is O(n) times the number of preprocessing vectors, which is also signif-
icantly lower in our algorithm. This fast convergence is due to the fact that a single step of our
algorithm reduces the distance to the nearest lattice point by at least a constant factor, starting
from any target within the decoding radius, and it reduces this distance by a polynomial factor
when the target is closer by a constant factor. In comparison, the LLM algorithm reduces this
distance by a factor of only 1− 1/poly(n).

Finally, we note that our hill-climbing algorithm is quite interesting also in the regime of su-
perpolynomial running time, and provides a smooth tradeoff between running time and decoding
radius. For instance, by an appropriate setting of parameters, we obtain for any α < 1/2 an algo-
rithm that can handle targets at distance up to αλ1(L) using N ≈ Õ(n exp(α2n/(1− 2α)2)) vectors
as advice and runs in time Õ(nN). (See Corollary 3.3 for the precise statement.)

Reducing CVP to CVP on close targets. In our second main contribution, appearing in Sec-
tions 5 and 6, we show that in order to solve either CVP or CVPP, it suffices to answer queries on
target points that are close to the lattice.

In Section 5 we focus on the preprocessing setting. We show in Theorem 5.1 that for any
non-increasing function α(n) > 0, in order to solve

√
n/(2α(n))-approximate CVPP it suffices to

answer queries within distance αλ1(L). By combining this reduction with the LLM algorithm (or

4



our improved algorithm), we immediately obtain an O(n/
√

log n) approximation algorithm for
search CVPP, improving on Lagarias et al.’s algorithm [LLS90]. In terms of techniques, we closely
follow Kannan’s idea [Kan87] of looking for a projection of the lattice in which the target point is
relatively close to the lattice.

By refining the ideas used in Theorem 5.1, we give in Theorem 5.2 a similar reduction with
the additional property that it incurs almost no blowup in the amount of preprocessing advice
needed. Combining this reduction (as it appears in Corollary 5.3) with our improved BDDP algo-
rithm, we obtain an algorithm for O(n)-CVPP that uses only O(n) vectors of advice. This is quite
remarkable since O(n) vectors are “not much more” than the n needed to form a basis; and it is an
interesting open question whether there exists a basis using which one can obtain even a polyno-
mial approximation for CVPP (see below). Apart from the theoretical interest in minimizing the
advice, this might have applications in cryptography or coding theory.

In Section 6, we consider the setting without preprocessing and show for any τ = τ(n) > 0
and γ = γ(n) ≥ 1, a reduction from

√
1 + τ · γ-approximate CVP to CVP with the slightly harder

approximation factor γ but with a distance bound of
√

1 + τ−1 · λ1(L). We note that this re-
duction also applies to approximation factors well below

√
n, in contrast to our reduction in the

preprocessing setting. Notice that here we also require distance guarantees above λ1(L), while
the preprocessing setting can work well below the unique decoding radius of λ1(L)/2. When
combined with the hardness result of [DKRS03], our reduction shows that approximate CVP is
hard even when the target is guaranteed to be close to the lattice. See Corollary 6.2 for the precise
hardness result. Our reduction relies on a lattice sparsification technique introduced by Dadush
and Kun [DK13] who used it to develop deterministic single-exponential time algorithms for ap-
proximate CVP under general norms.

1.2 Open Questions and Discussion

The main open question is whether one can improve our O(n/
√

log n) approximation factor of
search CVPP, and possibly match the best known approximation factor O(

√
n/ log n) for the de-

cision version.
Another open problem is to provide a deeper understanding of the computational complexity

of BDD both with and without preprocessing. Liu et al. [LLM06] showed that 1√
2
-BDD is NP-

hard in the non-preprocessing version, however nothing is known for smaller distance bounds.
This is in contrast to the situation for CVPP and SVP, where any constant factor approximation is
NP-hard. A natural question is therefore: is α-BDD NP-hard for any constant α?

An open question already mentioned briefly above is whether there exists a basis that one
can use to obtain a polynomial approximation for CVPP. A natural approach is to use Babai’s
algorithm (see Section 2.6), whose approximation factor can be shown to be

max
1≤i≤n

√
∑i

j=1 ‖b̃j‖2

‖b̃i‖
,

where the b̃i are the Gram-Schmidt orthogonalization of the given basis. The open question,
once specialized to Babai’s algorithm, is therefore equivalent to asking whether every lattice has a
basis with maxi≤j ‖b̃i‖/‖b̃j‖ < poly(n). The best known upper bound is nO(log n) [LLS90] using a
Korkine-Zolotarev basis.
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Finally, we note that our reductions in Section 5 and Section 6 are to the approximate bounded-
distance problem. That is, we are guaranteed to be close to the lattice and are required to output
a nearby lattice point, but not necessarily the closest. In contrast, the LLM algorithm and our im-
provement both have the property that they actually output the closest lattice point, an apparently
harder problem. So, we are seemingly unable to use the full strength of our reduction. This leads
to the following intuitive question: can the presence of one very close lattice point help in finding
a different relatively close lattice point? Alternatively, is there a reduction from the approximate
distance-bounded problem to its exact version? The current gap between the search and deci-
sion versions of CVPP seems to suggest that being very close to the lattice may provide useful
information that is still insufficient to find the nearest vector.

2 Preliminaries

2.1 Lattices

A rank d lattice L ⊂ Rn is the set of all integer linear combinations of d linearly independent
vectors B = (b1, . . . , bd). B is called a basis of the lattice and is not unique. We sometimes write
L(B) to signify the lattice generated by B. The length of the shortest nonzero vector, also known
as the first successive minimum, is denoted by λ1(L) := min0 6=x∈L ‖x‖.

For any point x ∈ Rn, we define dist(x,L) as the minimum of ‖x − y‖ for all y ∈ L. The
covering radius µ(L) is the supremum of dist(x,L) for all x ∈ span(L).

For any lattice L, the dual lattice, denoted L∗, is defined as the set of all points in span(L) that
have integer inner products with all lattice points,

L∗ = {w ∈ span(L) : ∀y ∈ L, 〈w, y〉 ∈ Z} .

Similarly, for a lattice basis B = (b1, . . . , bd), we define the dual basis B∗ = (b∗1 , . . . , b∗d) to be the
unique set of vectors in span(L) satisfying 〈b∗i , bj〉 = δi,j. It is easy to show that L∗ is itself a rank
d lattice and B∗ is a basis of L∗.

In what follows, we typically consider only lattices L ⊂ Rn whose rank is n (lattices of full
rank). We note that all of our results apply to more general lattices, as we can simply think of the
lattice as embedded in span(L). We sometimes make use of this fact implicitly.

The following technical lemma gives rough bounds on lattice parameters in terms of represen-
tation size.

Lemma 2.1. Let L ⊂ Qn be a lattice with basis B. Let ` be the bit length of B in a standard binary
representation. Then, µ(L) ≤ 2O(`) and 1/λ1(L) ≤ 2O(`).

Proof. Let B = (b1, . . . , bn). Then clearly

µ(L) ≤∑
i
‖bi‖ ≤ 2O(`) .

Similarly, if bi = (pi,1/qi,1, . . . , pi,n/qi,n), then any integer linear combination of the bi must be
expressible as p/q where q = ∏ qi,j ≤ 2O(`). Therefore, 1/λ1(L) ≤ q ≤ 2O(`).

Given a basis, B = (b1, . . . , bn), we define its Gram-Schmidt orthogonalization (b̃1, . . . , b̃n) by

b̃i = π{b1,...,bi−1}⊥(bi) ,
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and the Gram-Schmidt coefficients µi,j by

µi,j =
〈bi, b̃j〉
‖b̃j‖2 .

Here, πA is the orthogonal projection on the subspace A and {b1, . . . , bi−1}⊥ denotes the subspace
orthogonal to b1, . . . , bi−1.

Definition 2.2. A basis B = (b1, . . . , bn) of L is a Hermite-Korkin-Zolotarev (HKZ) basis if

1. ‖b1‖ = λ1(L);

2. the Gram-Schmidt coefficients of B satisfy |µi,j| ≤ 1
2 for all j < i; and

3. π{b1}⊥(b2), . . . , π{b1}⊥(bn) is an HKZ basis of π{b1}⊥(L).

2.2 Lattice Problems

Definition 2.3. For any approximation parameter γ = γ(n) ≥ 1, the search problem γ-SVP (Shortest
Vector Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn. The goal is to output a
vector y ∈ L satisfying ‖y‖ ≤ γ · λ1(L).

Definition 2.4. For any approximation parameter γ = γ(n) ≥ 1, the search problem γ-CVP (Closest
Vector Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn and a vector t ∈ Rn, the
target. The goal is to output a vector y ∈ L satisfying ‖t− y‖ ≤ γ · dist(t,L).

We often ignore the basis and simply refer to L and t as the input.

Definition 2.5. The decision problems γ-GapCVP is the decision analogue of γ-CVP, defined as follows:
The input is a basis B of a lattice L ⊂ Rn and a target vector t ∈ Rn. It is a YES instance if dist(t,L) ≤ 1.
It is a NO instance if dist(t,L) > γ.

Dinur et al. [DKRS03] showed the current best known hardness result for γ-GapCVP, which
of course immediately implies a hardness result for γ-CVP.

Theorem 2.6 ([DKRS03]). There is some constant c > 0 such that γ-GapCVP (and therefore γ-CVP) is
NP-hard for γ = nc/ log log n.

Definition 2.7. Let φ be a positive-valued function on lattices and γ(n) ≥ 1. Then, γ-CVPφ is the problem
of solving γ-CVP when the input lattice L and target point t satisfy dist(t,L) < φ(L). If the target point
is outside of this range, any output is acceptable.

We note that the standard reduction from γ-SVP to γ-CVP (see, for example, [MG02]) is actu-
ally a reduction from γ-SVP to γ-CVPφ where φ(L) = λ1(L).

Theorem 2.8. There is a polynomial-time reduction from γ-SVP to γ-CVPφ where φ(L) = λ1(L) for any
lattice L and γ = γ(n) ≥ 1.

Definition 2.9. An algorithm with preprocessing consists of two phases. The first phase, called the pre-
processing algorithm, takes input P and outputs an advice string A. The second phase, called the query
algorithm, takes input A and Q, the query, and outputs a solution S. We say that such an algorithm runs
in polynomial time if the advice A is polynomial in the length of P and the query algorithm runs in time
polynomial in the lengths of P and Q. The preprocessing algorithm may take arbitrary time.
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Definition 2.10. The search problems γ-CVPP and γ-CVPPφ (Closest Vector Problem with Preprocess-
ing) are the preprocessing analogues of γ-CVP and γ-CVPφ respectively, defined as follows: The input to
preprocessing is a basis B of a lattice L ⊂ Rn. The input to the query phase is a vector t ∈ Rn. The goal is
to return a valid solution to γ-CVP or γ-CVPφ respectively.

Definition 2.11. For any approximation parameter α = α(n), the search problem with preprocessing
α-BDDP (Bounded Distance Decoding) is simply 1-CVPPφ where φ(L) = α · λ1(L) for any lattice L.

2.3 The Discrete Gaussian and the Smoothing Parameter

For any s > 0, we define the function ρs : Rn → R as ρs(t) = exp(−π‖t‖2/s2). When s = 1, we
simply write ρ(t). For a set A we define ρs(A) = ∑x∈A ρs(x).

Definition 2.12. For a lattice L ⊂ Rn and a vector t ∈ Rn, let DL+t,s be the probability distribution over
L + t such that the probability of drawing x ∈ L + t is proportional to ρs(x). We call this the discrete
Gaussian distribution over L+ t with parameter s.

For any lattice L ⊂ Rn and t ∈ Rn, let

f (t) = fL(t) = ρ(L+ t)/ρ(L) . (5)

Banaszczyk proved the following two lemmas in [Ban93]. We include proofs for completeness.

Lemma 2.13. For an n-dimensional lattice L, shift c ∈ Rn, and any t ≥ 1,

Pr
y∼DL+c

[
‖y‖ ≥ t

√
n

2π

]
≤ ρ(L)

ρ(L+ c)
e−

n
2 (t

2−2 log t−1) ≤ ρ(L)
ρ(L+ c)

e−
n
2 (t−1)2

.

Proof. For any 0 < α < 1, we have that

E
y∼DL+c

[eπα‖y‖2
] =

ρ(L)
ρ(L+ c)

ρ1/(
√

1−α)(L+ c)

ρ(L)

=
ρ(L)

ρ(L+ c)

( 1√
1− α

)n ∑y∈L∗ e2πi〈y,c〉ρ√1−α(y)
ρ(L∗) (Poisson summation formula)

≤ ρ(L)
ρ(L+ c)

( 1√
1− α

)n ρ√1−α(L∗)
ρ(L∗)

≤ ρ(L)
ρ(L+ c)

( 1√
1− α

)n
.

Using the above and Markov’s inequality, we have that

Pr
y∼DL+c

[
‖y‖ ≥ t

√
n

2π

]
= Pr

[
eπα‖y‖2 ≥ eαnt2/2]

≤ ρ(L)
ρ(L+ c)

(1/
√

1− α)n

eαnt2/2

=
ρ(L)

ρ(L+ c)
e−

n
2 (αt2+log(1−α)) .
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The first bound now follows by setting α = 1− 1/t2.
For the simplified bound, using the fact that 0 ≤ log t ≤ t− 1, for t ≥ 1, we get that

e−
n
2 (t

2−2 log t−1) ≤ e−
n
2 (t

2−2(t−1)−1) = e−
n
2 (t−1)2

,

as needed.

Lemma 2.14. Let L ⊂ Rn be a lattice of rank n. Then, for all t ∈ Rn, f (t) ≥ ρ(t).

Proof.
ρ(L+ t) = ρ(t) ∑

y∈L
cosh(2π〈y, t〉)ρ(y) ≥ ρ(t)ρ(L) .

Definition 2.15. For ε > 0 and L ⊂ Rn a lattice, we define the smoothing parameter ηε(L) as the unique
value satisfying ρ1/ηε(L)(L∗ \ {0}) = ε.

The name smoothing parameter comes from the fact that, for s ≥ ηε(L), ρs(L+ t) varies by at
most a multiplicative factor of (1± ε) [Reg09].

2.4 Behavior of
√

log(1/ε)/ηε(L∗)

The function g(ε) =
√

log(1/ε)/ηε(L∗) is quite important for our BDDP algorithm, so we ana-
lyze its behavior here. Our first lemma shows that g(ε) is strictly monotonically decreasing as ε
increases. (This is not obvious since both the numerator and the denominator are monotonically
decreasing.) It is a simple modification of [CDLP13, Lemma 2.4].

Lemma 2.16. Let L ⊂ Rn be a lattice of rank at least one. Let g(ε) =
√

log(1/ε)/ηε(L∗) for any
ε ∈ (0, 1). Then, g(ε) is strictly monotonically decreasing.

Proof. Our goal is to prove that for any ε ∈ (0, 1), r > 1, g(ε/r) > g(ε), or equivalently, that
ηε/r(L∗) < ηε(L∗) · t where

t =
√

log(r/ε)√
log(1/ε)

> 1 .

This follows from

∑
y∈L\{0}

(e−πηε(L∗)2‖y‖2
)t2

<
(

∑
y∈L\{0}

e−πηε(L∗)2‖y‖2
)t2

= εt2
= ε/r .

The next lemma and its corollary show the relationship between g(ε) and λ1(L). Similar anal-
ysis appears in [MR07].

Lemma 2.17. Let L ⊆ Rn be an n-dimensional lattice. Then, for ε ∈ (0, 1),√
log(2/ε)/π

λ1(L)
≤ ηε(L∗) ≤

√
log((1 + ε)/ε)/π +

√
n/(2π)

λ1(L)
.
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Proof. For the lower bound, we note that for s ≤
√

log(2/ε)/π

λ1(L) , we have that

ρ1/s(L \ {0}) > 2e−π(sλ1(L))2 ≥ ε,

as needed. For the upper bound, we note that ηε(L∗) ≤ s if and only if Pry∼DL,1/s [y 6= 0] ≤ ε
1+ε . By

Lemma 2.13, letting s = t
√

n/(2π)/λ1(L), for t ≥ 1, we have that

Pr
x∼DL,1/s

[y 6= 0] = Pr
y∼DL,1/s

[‖x‖ ≥ λ1(L)] = Pr
y∼DL

[‖y‖ ≥ t ·
√

n/2π] ≤ e−
n
2 (t−1)2

.

Setting t =
√

2 log((1 + ε)/ε)/n + 1, we get that Pry∼DL,1/s [y 6= 0] ≤ ε
1+ε . Therefore

ηε(L∗) ≤ t
√

n/(2π)

λ1(L)
=

√
log((1 + ε)/ε)/π +

√
n/(2π)

λ1(L)
,

as needed.

Corollary 2.18. Let L ⊆ Rn be an n-dimensional lattice. Then, for ε ∈ (0, 1),√
log(2/ε)/π

ηε(L∗)
≤ λ1(L) ≤

√
log(2/ε)/π

ηε(L∗)

(
1 +

√
n/2√

log(2/ε)

)
.

2.5 Tail Bounds

We next introduce subgaussian and subexponential random variables, and in particular, the sub-
gaussianity of DL,s.

Definition 2.19. We say that a random variable X (or its distribution) over Rn is subgaussian with pa-
rameter s > 0 if E[X] = 0, and for all t ∈ R and all unit vectors v ∈ Rn,

Pr[|〈X, v〉| ≥ t] ≤ 2 · e−πt2/s2
.

Lemma 2.20 ([MP12, Lemma 2.8]). Let L ⊂ Rn be a lattice of rank n. Then for any s > 0, DL,s is
subgaussian with parameter s.

Definition 2.21. We say that a random variable X (or its distribution) over R is subexponential with
parameter s if, for any t > 0

Pr[|X| ≥ t] ≤ e1−t/s .

Vershynin proved a basic relationship between subgaussian and subexponential random vari-
ables, from which we derive a simple corollary.

Lemma 2.22 ([Ver12, Lemma 5.14]). If X is a subgaussian random variable over Rn with parameter s,
then for any unit vector v ∈ Rn, 〈X, v〉2 is subexponential with parameter O(s).

Corollary 2.23. If X and Y are subgaussian random variables over Rn with parameter s, then for any two
unit vectors u, v ∈ Rn, 〈X, u〉〈Y, v〉 is subexponential with parameter O(s)

10



Proof. It follows immediately from the definitions that subgaussian random variables with pa-
rameter O(s) are closed under addition and multiplication by constants, as are subexponential
random variables with parameter O(s). Therefore,

〈X, u〉〈Y, v〉 = 1
2
(〈X, u〉+ 〈Y, v〉)2 − 1

2
〈X, u〉2 − 1

2
〈Y, v〉2 .

is subexponential with parameter O(s) as claimed.

Vershynin showed the next useful property of subexponential random variables.

Lemma 2.24 ([Ver12, Proposition 5.16]). Let X1, . . . , XN be independent subexponential random vari-
ables over R with parameter s, and suppose E[Xi] = 0 for all i. Then, for any t ≥ 0,

Pr
[ 1

N
∣∣∑

i
Xi
∣∣ ≥ t

]
≤ 21−Ω(N min(t/s,t2/s2)) .

We will also need the Chernoff-Hoeffding bound [Hoe63].

Lemma 2.25 (Chernoff-Hoeffding bound). Let X1, . . . , XN be independent and identically distributed
random variables with −a ≤ Xi ≤ a. Then, for s > 0

Pr
[∣∣∣E[Xi]−

1
N
·∑ Xi

∣∣∣ ≥ s
]
≤ 21−Ω(Ns2/a2) .

2.6 Babai’s Nearest Plane Algorithm

Babai’s nearest plane algorithm (denoted BABAI) is an algorithm introduced by Babai [Bab86] for
rounding a target vector to a nearby lattice point one coordinate at a time. The input is a basis
B = (b1, . . . , bn) for a lattice L and a target t ∈ Rn.

We first project t onto span(L). We then choose the last coordinate cn ∈ Z of our nearby lattice
point by simple rounding, setting

cn = b〈t, b∗n〉e .

Next we call BABAI recursively on (b1, . . . , bn−1) and t− cnbn and receive the result y. We then
return y + cnbn.

Stated more intuitively, BABAI chooses the lattice hyperplane

cnbn + span(b1, . . . , bn−1) = {x ∈ span(L) : 〈x, b∗n〉 = cn}

with cn ∈ Z that is nearest to the target and recurses on this hyperplane.
Babai proved the following standard fact about his algorithm.

Lemma 2.26 ([Bab86]). Let L ⊂ Rn be a lattice of rank n. For any basis, B = (b1, . . . , bn) of L with
Gram-Schmidt orthogonalization (b̃1, . . . , b̃n) and any target vector t ∈ Rn, BABAI(t, B) outputs y ∈ L
satisfying

‖y− t‖2 ≤ 1
4

n

∑
i=1
‖b̃i‖2 ≤ n

4
·max

i
‖b̃i‖2 .
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2.7 δ-Nets and the Spectral Norm

Definition 2.27. For any δ > 0, A ⊂ Rn is a δ-net of S if A ⊆ S, and for each v ∈ S, there is some u ∈ A
such that ‖u− v‖ ≤ δ.

We’ll be interested in the case when S is a ball, a sphere, or a shell. The next lemma shows that
we can do this without many points. The proof is by a standard packing argument. (See Lemma
5.2 of [Ver12], for example.)

Lemma 2.28. For any δ > 0, there exists a δ-net of the unit ball in Rn with (1 + 2/δ)n points. Nets of
the same cardinality exist for spherical shells of outer radius one, and for the unit sphere.

A δ-net of the unit sphere can be used to accurately approximate the length of any vector.

Lemma 2.29. Let δ ∈ (0, 1), and let A be a δ-net of the unit sphere in Rn. Then, for any x ∈ Rn,

max
v∈A
|〈v, x〉| ≤ ‖x‖ ≤ 1

1− δ
·max

v∈A
|〈v, x〉|.

Proof. Without loss of generality, assume ‖x‖ = 1. The first inequality is trivial. By hypothesis,
there is some v ∈ A such that ‖v− x‖ ≤ δ. Then,

〈v, x〉 = 〈x, x〉 − 〈v− x, x〉 ≥ 1− δ .

The result follows.

Similarly, a δ-net can be used to approximate the spectral norm of a matrix, as defined below.

Definition 2.30. For a matrix M ∈ Rn×n, the spectral norm of M is defined as

‖M‖ := sup
‖x‖=1

‖Mx‖ .

For a symmetric matrix M, ‖M‖ is equivalently the largest absolute value of an eigenvalue of
M.

Lemma 2.31 ([Ver12, Lemma 5.4]). For a symmetric matrix M ∈ Rn×n and a δ-net of the unit sphere A
with 0 < δ < 1/2,

‖M‖ ≤ 1
1− 2δ

·max
x∈A
|〈Mx, x〉| .

3 Exact CVPP with a Promise

In this section we prove the following theorem, which gives an efficient solution to CVPP for
points within distance essentially

√
log(2/ε)/π/(2ηε(L∗)). By Corollary 2.18, for ε = 1/poly(n)

this radius is at least as large as the radius
√
(log n)/n ·λ1(L) achieved by [LLM06], and moreover,

as ε goes to zero, it converges to the unique decoding radius λ1(L)/2. Also, by Lemma 2.16, this
radius is (essentially) increasing as ε decreases, and thus our algorithm solves a harder problem
for smaller ε.
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Theorem 3.1. Let ε ∈ (0, 1/200) and φ(L) = δmaxsε/ηε(L∗) where sε =
( 1

π log 2(1+ε)
ε

)1/2and δmax =
1
2 −

2
πs2

ε
. Then, there exists an algorithm that solves 1-CVPPφ using O(nN(1 + log n/ log(1/ε)) + nω)

arithmetic operations, where N = O(n log(1/ε)/
√

ε) and nω is the number of arithmetic operations
needed to compute the inverse of an n × n matrix. Moreover, the preprocessing consists of N vectors
sampled from DL∗,ηε(L∗).

We note that we can achieve a run-time of O(nN(1 + log n/ log(1/ε))) arithmetic operations
by computing the inverse of a matrix as part of the preprocessing.

Our result will follow easily from a proposition about fW , whose proof is in Section 4.

Proposition 3.2. LetL ⊂ Rn be a lattice with ρ(L) = 1+ ε with ε ∈ (0, 1/200). Let sε =
( 1

π log 2(1+ε)
ε

)1/2,
δmax = 1

2 −
2

πs2
ε
, and δ(t) = max{ 1

8 , ‖t‖sε
}. Let W = (w1, . . . , wN) be sampled independently from DL∗ .

If N = Ω(n log(1/ε)/
√

ε), then with probability at least 1− 2−Ω(n),∥∥∥ ∇ fW(t)
2π fW(t)

+ t
∥∥∥ ≤ ε(1−2δ(t))/4‖t‖ (6)

holds simultaneously for all t ∈ Rn with ‖t‖ ≤ δmaxsε.

We note that for ε < 1/200, ε(1−2δmax)/4 = e− log(1/ε)/ log(2(1+ε)/ε) ≤ 1/2, so the right hand side
of (6) is at most ‖t‖/2.

Proof of Theorem 3.1. We present an algorithm with probabilistic preprocessing and argue that with
positive probability the preprocessing algorithm will output advice that results in a query algo-
rithm that is successful on all relevant inputs. Clearly this implies a deterministic algorithm.

The preprocessing algorithm takes as input a lattice L ⊂ Rn of rank n. It returns as advice a
sequence of samples W = (w1, . . . , wN) from DL∗,ηε(L∗) where N = O(n log(1/ε)/

√
ε) is large to

satisfy Proposition 3.2.
The query algorithm takes a target point t ∈ Rn and advice W from preprocessing. It then

iteratively updates t ← t +∇ fW(t)/(2π fW(t)) a total of 1 + d8 log(
√

nsε)/ log(1/ε)e times. It
then scans W. Let V∗ = (v∗1 , . . . , v∗n) ⊂ W be the first n linearly independent vectors it finds of
length bounded by

√
nηε(L∗) (it aborts if no such vectors exist). The algorithm computes V =

(v1, . . . , vn) satisfying 〈v∗i , vj〉 = δi,j and returns ∑ civi for ci = b〈v∗i , t〉e.
By scaling the lattice appropriately, we can assume without loss of generality that ρ(L) = 1+ ε

so that ηε(L∗) = 1. Moreover, it suffices to prove correctness for the case when 0 is the closest
lattice vector to t, and therefore ‖t‖ ≤ δmaxsε. The reason is that for y ∈ L,

fW(t + y) =
1
N ∑ cos(2π〈wi, t + y〉) = 1

N ∑ cos(2π〈wi, t〉) = fW(t),

so fW(t) is periodic over the lattice, and so is its gradient, and also

∑b〈v∗i , t + y〉evi = ∑b〈v∗i , t〉evi + ∑〈v∗i , y〉vi = y + ∑b〈v∗i , t〉evi

for any y ∈ L.
We now argue that with probability 1− 2−Ω(n) taken over the preprocessing, the query algo-

rithm succeeds in finding the set V∗ (and hence also V). Let W ′ = (w1, . . . , wm) for m = O(n).
By Lemma 2.13, we have that Pr[‖wi‖ >

√
n] < e−

n
2 (
√

2π−1)2 ≤ e−n, and hence with probability at
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least 1−me−n = 1− 2−Ω(n), all vectors in W ′ are of norm at most
√

n. In order to show that the
vectors in W ′ span Rn we can, e.g., apply Lemma 4.5 below to W ′. We get that for m = O(n) large
enough, the Hessian of fW ′ satisfies

‖H fW ′(0) + 2π In‖ ≤
4πε

1 + ε

(
log

2(1 + ε)

ε
+ 1
)
+ 1 < 2π

with probability 1 − 2−Ω(n), where we used ε < 1/200. In particular, the matrix H fW ′(0) =
−4π2/m ∑m

i=1 wiwT
i (see Eq. (3)) is invertible, and hence W ′ spans Rn.

Now assume that W contains such a subset V∗ and satisfies the property in Proposition 3.2. By
the union bound this happens with probability at least 1− 2−Ω(n) over the preprocessing. Then
using the remark below Proposition 3.2, for any target t satisfying ‖t‖ ≤ δmaxsε, the length of t
shrinks by a factor of at least 2 in the first iteration. In each subsequent iteration, ‖t‖ ≤ δmaxsε/2 <
sε/4, and hence the target shrinks by a factor of at least ε(1−2(1/4))/4 = ε1/8. Therefore, after
1 + d8 log(

√
nsε)/ log(1/ε)e total iterations, we have ‖t‖ < 1/(2

√
n). So, by Cauchy-Schwarz,

|〈t, v∗i 〉| < 1/2 and b〈t, v∗i 〉e = 0 for all i. Therefore, ∑n
i=1 vib〈v∗i , t〉e = 0, and correctness follows.

The running time consists of 1 + d8 log(
√

nsε)/ log(1/ε)e = 2 + O(log(n)/ log(1/ε)) itera-
tions, each dominated by the computation of O(N) dot products, followed by a matrix inversion.
Each dot product takes O(n) arithmetic operations, and the matrix inversion takes nω. So, the
total running time is O(nN(1 + log(n)/ log(1/ε)) + nω) arithmetic operations as claimed.

We remark that for small enough ε < 1/poly(n) (ε < n−5 suffices), the number of iterations of
gradient ascent used by the algorithm is only 1 + d8 log(

√
nsε)

log(1/ε)
e = 2.

Corollary 3.3. For Ω(1/
√

n) < α < 1/2, there exists an algorithm that solves α-BDDP with preprocess-
ing consisting of

N = O
( α2n2

(1− 2α)2 · exp
( α2n
(1− 2α)2 +

4
1− 2α

))
vectors using O(nN(1 + (1−2α)2 log n

α2n )) = O(nN(1 + log n
α2n )) arithmetic operations.

Proof. Let ε be given by

1/ε =
1
2
· exp

( 2α2n
(1− 2α)2 +

8
1− 2α

)
− 1 > 200 ,

and notice that

πs2
ε = log

(
2 · 1 + ε

ε

)
=

2α2n + 8(1− 2α)

(1− 2α)2 .
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Using Lemma 2.17, the decoding radius given by Theorem 3.1 satisfies

δmax ·
sε

ηε(L∗)
≥ δmaxsε

sε +
√

n/(2π)
· λ1(L)

=
πs2

ε − 4
2πs2

ε +
√

2πns2
ε

· λ1(L)

=
2α2n + 4− 16α2

4α2n + 16(1− 2α) + 2(1− 2α)
√

α2n2 + 4n(1− 2α)
· λ1(L)

≥ 2α2n + 4− 16α2

4α2n + 16(1− 2α) + 2(1− 2α)(αn + 2(1− 2α)/α)
· λ1(L)

= α · λ1(L) ,

where we have used the inequality
√

x + y ≤
√

x + y/(2
√

x) for x, y > 0.

We remark that one can strengthen the bound in Lemma 2.17 using the first bound in Lemma 2.13,
and as a result get improved dependence on α in Corollary 3.3 especially for large α. Since the
resulting expressions have no nice closed form, we leave the straightforward calculation to the
interested reader.

4 Proof of Proposition 3.2

Our goal is to show that∇ fW(t)/(2π fW(t)) is close to −t when ‖t‖ is small. We start by showing
in Section 4.1 that this is satisfied by the exact function f , i.e., that ∇ f (t)/(2π f (t)) is close to −t.
We also prove several other bounds on f . We then complete the proof in Section 4.2 by arguing
that fW and f are sufficiently close and so are their gradients.

4.1 Three Bounds on the Periodic Gaussian

We first give in Lemma 4.1 a general bound (illustrated in Figure 2) on f (t) itself. This will not
be used in the sequel and is included here as a warmup and for future reference. We then use a
similar idea in Lemma 4.2 to show that −∇ f (t)/(2π f (t)) is close to t, and in Corollary 4.3 bring
this bound to a more convenient form. Finally, in Lemma 4.4 we similarly bound the Hessian
H f (t).

Lemma 4.1. Let ε > 0 and L ⊂ Rn a lattice with ρ(L) = 1 + ε. Then, for any t ∈ Rn,

f (t) ≤ ρ(t)
( 1

1 + ε
+

ε

1 + ε
· cosh(2πsε‖t‖)

)
+ 2π‖t‖

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz

where sε =
( 1

π log 2(1+ε)
ε

)1/2.

Contrast this with the easy lower bound f (t) ≥ ρ(t) from Lemma 2.14 valid for all lattices and
all t.
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Figure 2: f (t) and our bound for ‖t‖ . sε for an example lattice.

Proof. We can write

f (t) =
ρ(L+ t)

ρ(L) =
ρ(t)
ρ(L) · ∑

y∈L
e−2π〈y,t〉ρ(y) = ρ(t) E

y∼DL
[cosh(2π〈y, t〉)]. (7)

We now use the fact that for any real-valued random variable X and (sufficiently nice) even func-
tion g : R→ R,

E
X
[g(X)] = E

X
[g(|X|)] = g(0) +

∫ ∞

0
g′(s)Pr

X
[|X| > s]ds .

Therefore, the expectation in Eq. (7) is given by

1 + 2π‖t‖
∫ ∞

s=0
Pr
[
|〈y, t〉| > s‖t‖

]
sinh(2πs‖t‖)ds. (8)

We can upper bound the probability using Lemma 2.20 (and noticing that y is nonzero with prob-
ability ε/(1 + ε)) by

Pr[|〈y, t〉| > s‖t‖] ≤ min
( ε

1 + ε
, 2e−πs2

)
.

The minimum is determined by the second term for s > sε. We can therefore bound the integral
in Eq. (8) from above by the sum of two integrals, the first being

ε

1 + ε

∫ sε

s=0
sinh(2πs‖t‖)ds =

ε

1 + ε
· cosh(2πsε‖t‖)− 1

2π‖t‖ ,

and the second being

2
∫ ∞

s=sε

e−πs2
sinh(2πs‖t‖)ds =

1
ρ(t)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz.

Putting it all together, we obtain the desired bound

ρ(L+ t)
ρ(L) ≤ ρ(t)

( 1
1 + ε

+
ε

1 + ε
· cosh(2πsε‖t‖) + 2π‖t‖ 1

ρ(t)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz
)

.
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Lemma 4.2. Let ε > 0 and L ⊂ Rn a lattice with ρ(L) = 1 + ε. Then, for any t ∈ Rn,∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥ ≤ ε

1 + ε
· (sε sinh(2πsε‖t‖)+ ‖t‖ cosh(2πsε‖t‖))+

1
ρ(t)
· (1+ 2π‖t‖2)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz

where sε =
( 1

π log 2(1+ε)
ε

)1/2.

Proof. Using Eq. (7) to compute ∇ f (t) and recalling that f (t) = ρ(L+ t)/(1 + ε),∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥ =

(1 + ε)ρ(t)
ρ(L+ t)

max
‖v‖=1

E
y∼DL

[sinh(2π〈y, t〉)〈y, v〉] .

Fix a unit vector v. For any y, let Pr,s(y) be the indicator that |〈y, v〉| > s, |〈y, t〉| > r‖t‖, and
〈y, t〉〈y, v〉 > 0. Then,

sinh(2π〈y, t〉)〈y, v〉

= 2π‖t‖
∫ ∞

0

∫ ∞

0
cosh(2π‖t‖r)(1|〈y,v〉|>s1|〈y,t〉|>r‖t‖ sign(〈y, t〉) sign(〈y, v〉))dsdr

≤ 2π‖t‖
∫ ∞

0

∫ ∞

0
cosh(2π‖t‖r)Pr,s(y)dsdr .

Taking expectations on both sides, we get

E[sinh(2π〈y, t〉)〈y, v〉] ≤ 2π‖t‖
∫ ∞

0

∫ ∞

0
cosh(2π‖t‖r)E[Pr,s(y)]dsdr .

As in the previous proof, note that

E[Pr,s(y)] ≤ min
( ε

1 + ε
, 2e−πs2

, 2e−πr2
)

by Lemma 2.20. So, we partition the positive quadrant of the (r, s)-plane into three regions and
bound the integral separately in each region.

1. When s ≤ sε and r ≤ sε, E[Pr,s(y)] is at most ε/(1 + ε), and the integral in this region is
bounded by

ε

1 + ε
·
∫ sε

0

∫ sε

0
cosh(2πr‖t‖)dsdr =

ε

1 + ε
· sε

2π‖t‖ sinh(2πsε‖t‖) .

2. When s ≤ r and r > sε, E[Pr,s(y)] is at most 2e−πr2
, and the integral in this region is bounded

by

2
∫ ∞

sε

∫ r

0
cosh(2π‖t‖r)e−πr2

dsdr =
1

ρ(t)

∫ ∞

sε

(re−π(r−‖t‖)2
+ re−π(r+‖t‖)2

)dr

=
1

2πρ(t)
(
e−π(sε−‖t‖)2

+ e−π(sε+‖t‖)2)
+
‖t‖
ρ(t)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz

=
1

2π

ε

1 + ε
· cosh(2πsε‖t‖) +

‖t‖
ρ(t)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz .
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3. When s > r and s > sε, E[Pr,s(y)] is at most 2e−πs2
. So, the integral in this region is bounded

by

2
∫ ∞

sε

∫ s

0
cosh(2π‖t‖r)e−πs2

drds =
1

π‖t‖

∫ ∞

sε

sinh(2π‖t‖s)e−πs2
drds

=
1

2π‖t‖ρ(t)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz .

Combining everything together, and applying Lemma 2.14,∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥

≤ ρ(t)
ρ(L+ t)

(
ε · (sε sinh(2πsε‖t‖) + ‖t‖ cosh(2πsε‖t‖)) +

1 + ε

ρ(t)
(1 + 2π‖t‖2)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz
)

≤ ε

1 + ε
· (sε sinh(2πsε‖t‖) + ‖t‖ cosh(2πsε‖t‖)) +

1
ρ(t)
· (1 + 2π‖t‖2)

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz .

Corollary 4.3. Let ε ∈ (0, 1/200) and L ⊂ Rn a lattice with ρ(L) = 1 + ε. Let sε =
( 1

π log 2(1+ε)
ε

)1/2.
Then for all t ∈ Rn satisfying ‖t‖ < sε/2,∥∥∥ ∇ f (t)

2π f (t)
+ t
∥∥∥ ≤ 12 · (ε/2)1−2δ(t) · ‖t‖ ,

where δ(t) = max(1/8, ‖t‖/sε). In particular, for δ(t) ≤ δmax =
1
2 −

2
πs2

ε
,

∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥ ≤ ‖t‖

4
.

Proof. Recall from Lemma 4.2 that∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥ ≤ ε

1 + ε
· (sε sinh(2πsε‖t‖)+ ‖t‖ cosh(2πsε‖t‖))+ (1+ 2π‖t‖2) · eπ‖t‖2

∫ sε+‖t‖

sε−‖t‖
e−πz2

dz .

Because sinh is convex on R+, sinh(0) = 0, and ‖t‖ ≤ δ(t)sε,

sinh(2πsε‖t‖) ≤ (1− ‖t‖/(δ(t)sε)) sinh(0) +
‖t‖

δ(t)sε
· sinh(2πδ(t)s2

ε ) ≤
‖t‖

2δ(t)sε
· e2πδ(t)s2

ε .

Using the above,

ε

1 + ε
· (sε sinh(2πsε‖t‖) + ‖t‖ cosh(2πsε‖t‖)) ≤ ‖t‖ ·

ε

1 + ε
·
( e2πδ(t)s2

ε

2δ(t)
+ cosh(2πδ(t)s2

ε )
)

≤ ‖t‖ · ε

1 + ε
·
( 1

2δ(t)
+ 1
)
· e2πδ(t)s2

ε

= ‖t‖ ·
( 1

δ(t)
+ 2
)
· e−π(1−2δ(t))s2

ε .
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Turning to the integral and using the above bound on sinh(2πsε‖t‖) again,

eπ‖t‖2
∫ sε+‖t‖

sε−‖t‖
e−πz2

dz ≤ eπ‖t‖2
∫ sε+‖t‖

sε−‖t‖

z
sε − ‖t‖

e−πz2
dz

=
1

2π(sε − ‖t‖)
eπ‖t‖2

(e−π(sε−‖t‖)2 − e−π(sε+‖t‖)2
)

=
1

π(sε − ‖t‖)
e−πs2

ε sinh(2πsε‖t‖)

≤ ‖t‖
(1− δ(t))δ(t)sε

· 1
2πsε

· e−πs2
ε e2πδ(t)s2

ε

≤ ‖t‖ · 1
πδ(t)s2

ε

· e−π(1−2δ(t))s2
ε .

Combining everything together,∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥ ≤ ‖t‖( 1

δ(t)
+ 2 +

1
πδ(t)s2

ε

+ 2δ(t)
)
· e−π(1−2δ(t))s2

ε

≤ ‖t‖
( 1

δ(t)
+ 2 +

1
πδ(t)s2

ε

+ 2δ(t)
)
· (ε/2)1−2δ(t) .

The first result follows by noting that 1
δ(t) + 2 + 1

πδ(t)s2
ε
+ 2δ(t) < 12 for ε < 1/200 and δ(t) ∈

(1/8, 1/2). The second result follows by noting that 12(ε/2)1−2δ(t) < 1/4 for δ(t) ≤ 1
2 −

2
πs2

ε
.

Lemma 4.4. Let ε > 0 and L ⊂ Rn a lattice with ρ(L) = 1 + ε. Then,

1. ‖H f (t)‖ ≤ ‖H f (0)‖ ≤ 2π for all t ∈ Rn.

2. ‖H f (0) + 2π In‖ ≤
4πε

1 + ε

(
log

2(1 + ε)

ε
+ 1
)

.

Proof. From Eq. (2), we have that for any t ∈ Rn

‖H f (t)‖ = 4π2∥∥ E
w∼DL∗

[wwT cos(2π〈w,t〉)]
∥∥

≤ 4π2∥∥ E
w∼DL∗

[wwT]
∥∥

= ‖H f (0)‖ .

From Eqs. (2) and (7), we have a representation of H f (0) in both the primal and the dual,

− 1
2π

H f (0) = In − 2π E
y∼DL

[yyT] = 2π E
w∼DL∗

[wwT] .

Noting that both expectations are positive semidefinite, it follows that ‖H f (t)‖ ≤ ‖H f (0)‖ ≤ 2π.
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For the second bound, following the technique used in the proofs of Lemmas 4.1 and 4.2,

‖H f (0) + 2π In‖ = 4π2 · max
‖v‖=1

E
y∼DL

[〈y, v〉2]

= 8π2 · max
‖v‖=1

∫ ∞

0
r Pr

y∼DL
[|〈y, v〉| ≥ r]dr

≤ 8π2
∫ ∞

0
r min(ε/(1 + ε), 2e−πr2

)dr (Lemma 2.20)

=
4πε

1 + ε

(
log

2(1 + ε)

ε
+ 1
)

.

4.2 Completing the Proof

In this section we complete the proof of Proposition 3.2. The basic plan of the proof is straight-
forward: after having shown in Corollary 4.3 the analogous property for the exact function f , it
suffices to show that∇ fW(t)/ fW(t) is close to∇ f (t)/ f (t) for all relevant t. It is obviously enough
to argue separately that ∇ fW is close to ∇ f and that fW is close to f (with appropriate notions
of closeness; see the technical Claim 4.8 for the precise statement). The former will be shown to
hold with high probability for any fixed t in Lemma 4.9 and then to hold with high probability
simultaneously for all relevant t in Lemma 4.10. Similarly, the latter will be shown to hold with
high probability for any fixed t in Lemma 4.11 and then to hold with high probability simultane-
ously for all relevant t in Lemma 4.12. In both cases, showing that the result holds simultaneously
for all t is done by taking a union bound over an appropriately chosen net and showing that the
functions do not vary much. One minor complication in the proof is that in the former case (close-
ness of ∇ fW) the net has to become denser as we get closer to the origin. In order to keep the net
finite, Lemma 4.10 actually does not handle tiny vectors t. Instead we include Lemma 4.7 which
proves Proposition 3.2 directly for the case of tiny vectors. Finally, many of our proofs require
quantitative statements about the smoothness fW and ∇ fW , which are shown in Lemma 4.5 and
Lemma 4.6.

Lemma 4.5. Let L ⊂ Rn be a lattice with ρ(L) = 1 + ε for some ε > 0, and let W = (w1, . . . , wN) be
sampled independently from DL∗ . Then, for s ≥ 0, N min(s, s2) ≥ Ω(n), and ∆ε =

4πε
1+ε (log 2(1+ε)

ε + 1),
we have

1. Pr[‖H fW(0) + 2π In‖ > ∆ε + s] ≤ 2−Ω(N min(s,s2)).

2. Pr[∃t ∈ Rn : ‖H fW(t) + 2π In‖ > ∆ε + s + (500n‖t‖)2] ≤ 2−Ω(n).

3. Pr[∃t ∈ Rn : ‖H fW(t)‖ > 2π + s] ≤ 2−Ω(N min(s,s2)).

Proof. For bound (1), using the triangle inequality and Lemma 4.4, we have that

‖H fW(0) + 2π In‖ ≤ ‖H f (0) + 2π In‖+ ‖H fW(0)− H f (0)‖ ≤ ∆ε + ‖H fW(0)− H f (0)‖.

It now suffices to bound the probability that ‖H fW(0)− H f (0)‖ > s. For this, note that

‖H fW(0)‖ = sup
‖v‖=1

|〈H fW(0)v, v〉| = 4π2

N
sup
‖v‖=1

∑
i
〈v, wi〉2 .
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By Lemma 2.20, wi are subgaussian random variables with parameter 1. It follows from Lemma 2.22
that 〈wi, v〉2 is subexponential with parameter O(1). Then, applying Lemma 2.24,

Pr[|〈(H fW(0)− H f (0))v, v〉| > s/2] ≤ 21−Ω(N min(s,s2)),

for any s ≥ 0. By Lemma 2.28, there is a 1
4 -net of the unit sphere A with |A| = 2O(n). Taking union

bound over A and applying Lemma 2.31 gives

Pr[‖H fW(0)− H f (0)‖ > s] ≤ 2−Ω(N min(s,s2))+O(n) = 2−Ω(N min(s,s2)) , (9)

by our assumption that N min(s, s2) = Ω(n).
For bound (2), using the triangle inequality as above, we have that

‖H fW(t) + 2π In‖ ≤ ‖H f (0) + 2π In‖+ ‖H fW(0)− H f (0)‖+ ‖H fW(t)− H fW(0)‖
≤ ∆ε + ‖H fW(0)− H f (0)‖+ ‖H fW(t)− H fW(0)‖.

By equation (9), we know that ‖H fW(0)− H f (0)‖ > s with probability at most 2−Ω(N min(s,s2)) =
2−Ω(n). Hence it suffices to prove that ‖H fW(t)− H fW(0)‖ > (500n‖t‖)2, for some t ∈ Rn, with
probability at most 2−Ω(n).

Using the inequality 1− θ2/2 ≤ cos(θ) ≤ 1 and Cauchy-Schwarz, we have that

‖H fW(t)− H fW(0)‖ = 4π2

N

∥∥∥ N

∑
i=1

(cos(2π〈wi, t〉)− 1)wiwT
i

∥∥∥
≤ 4π2

N

N

∑
i=1
| cos(2π〈wi, t〉)− 1|‖wiwT

i ‖

≤ 8π4

N

N

∑
i=1
〈wi, t〉2

∥∥wi
∥∥2

≤ (8π4n2‖t‖2)
1
N

N

∑
i=1

∥∥∥ wi√
n

∥∥∥4
.

It now suffices to bound the sum in the last expression with probability 1− 2−Ω(n). Let Sj = {i ∈
[N] : ‖wi‖ ≥ ej√n}, for j ≥ 0. Using Lemma 2.13, we have that

E[|Sj|] = N Pr[‖wi‖ ≥ ej√n] ≤ Ne−
n
2 (
√

2πej−1)2 ≤ Ne−ne2j
.

By Markov’s inequality, Pr[|Sj| ≥ Ne−ne2j+n(j+1)] ≤ e−n(j+1). By the union bound, the event |Sj| ≤
Ne−ne2j+n(j+1), ∀j ≥ 0, occurs with probability at least 1−∑∞

j=0 e−n(j+1) ≥ 1− 2e−n. Conditioning
on this event, we will show the desired bound.

For all i ∈ [N], we have that ‖ wi√
n‖

4 ≤ 1 + e4 ∑∞
j=0 e4j1i∈Sj . Using this, we get that

1
N

N

∑
i=1

∥∥∥ wi√
n

∥∥∥4
≤ 1 +

e4

N

∞

∑
j=0

e4j|Sj| ≤ 1 + e4
∞

∑
j=0

e−ne2j+n(j+1)+4j ≤ 1 + e4
∞

∑
j=0

e−j ≤ 2e4 .

Plugging in gives ‖H fW(t)− H fW(0)‖ ≤ (4π2e2n‖t‖)2 ≤ (500n‖t‖)2.
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For bound (3), we simply note that

‖H fW(t)‖ = 4π2

N
∥∥∑ wiwT

i cos(2π〈wit〉)
∥∥ ≤ 4π2

N
∥∥∑ wiwT

i
∥∥ = ‖H fW(0)‖ .

The bound now follows from equation (9), the fact that ‖H f (0)‖ ≤ 2π (Lemma 4.4), and the
triangle inequality.

The following lemma establishes strong continuity properties for f , ∇ f , and their respective
approximations.

Lemma 4.6. Let L ⊂ Rn be a lattice. Then, for all t, t′ ∈ Rn,

1. ‖∇ f (t′)−∇ f (t)‖ ≤ 2π‖t− t′‖.

2. | f (t′)− f (t)| ≤ 2π max(‖t‖, ‖t′‖)‖t′ − t‖.

Let W = (w1, . . . , wN) be sampled independently from DL∗ . Then for s > 0, N min(s, s2) = Ω(n), the
following both hold simultaneously for all t, t′ ∈ Rn with probability at least 1− 2−Ω(N min(s,s2)).

1. ‖∇ fW(t′)−∇ fW(t)‖ ≤ (2π + s)‖t′ − t‖

2. | fW(t′)− fW(t)| ≤ (2π + s)max(‖t‖, ‖t′‖)‖t′ − t‖

Proof. By Lemma 4.4, we have that ‖H f (x)‖ ≤ 2π for all x ∈ Rn. From this, we get that

‖∇ f (t′)−∇ f (t)‖ =
∥∥∥ ∫ 1

0
H f ((1− r)t + rt′) · (t′ − t)dr

∥∥∥
≤ ‖t′ − t‖

∫ 1

0
‖H f ((1− r)t + rt′)‖dr

≤ 2π‖t′ − t‖ .

Since ∇ f (0) = 0, using the above we get that ‖∇ f (x)‖ = ‖∇ f (x) − ∇ f (0)‖ ≤ 2π‖x‖, for all
x ∈ Rn. Using this inequality, we get that

| f (t′)− f (t)| =
∣∣∣ ∫ 1

0
〈∇ f ((1− r)t + rt′), t′ − t〉dr

∣∣∣
≤ ‖t′ − t‖

∫ 1

0
‖∇ f ((1− r)t + rt′)‖dr

≤ 2π max(‖t‖, ‖t′‖)‖t′ − t‖ .

For the second part, by Lemma 4.5 the event ‖H fW(x)‖ ≤ 2π + s, for all x ∈ Rn, holds with
probability 1− 2Ω(N min(s,s2)). The claim now follows by the same proof as above replacing f by
fW .

Lemma 4.7. Let L ⊂ Rn be a lattice with ρ(L) = 1 + ε for ε ∈ (0, 1/200). Let W = (w1, . . . , wN) be
sampled independently from DL∗ with N ≥ Ω(n/

√
ε). Then,

Pr
[
∃t, ‖t‖ ≤ ε1/8/(1000n) :

∥∥∥ ∇ fW(t)
2π fW(t)

+ t
∥∥∥ > ε1/4‖t‖

]
≤ 2−Ω(n) .
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Proof. Let ∆ε =
4πε
1+ε (log 2(1+ε)

ε + 1) as in Lemma 4.5, and note that ∆ε ≤ 3ε1/4 for ε < 1/200. Then,
by Lemma 4.5, setting s = 3ε1/4/4, we have that

‖H fW(x) + 2π In‖ < ∆ε + (500n‖x‖)2 + 3ε1/4/4 ≤ 3ε1/4 + ε1/4/4 + 3ε1/4/4 = 4ε1/4

holds simultaneously for all x with ‖x‖ ≤ ε1/8/(1000n) with probability at least 1− 2−Ω(n). Sup-
pose this holds. Noting that ∇ fW(0) = 0, it follows that for all x′, ‖x′‖ ≤ ε1/8/(1000n), we have
that

‖∇ fW(x′) + 2πx′‖ =
∥∥∥∫ 1

0
H fW(rx′)x′dr + 2πx′

∥∥∥ =
∥∥∥∫ 1

0
(H fW(rx′) + 2π In)x′dr

∥∥∥
≤ ‖x′‖

∫ 1

0
‖H fW(rx′) + 2π In‖dr ≤ 4ε1/4 · ‖x′‖ .

In particular, ‖∇ fW(x′)‖ ≤ (2π + 4ε1/4)‖x′‖. Since fW(0) = 1, it follows that for any t with
‖t‖ ≤ ε1/8/(1000n), we have

1 ≥ fW(t) ≥ 1− (2π + 4ε1/4)‖t‖2 ≥ 1− ε1/4/100 .

Putting it all together,∥∥∥∥ ∇ fW(t)
2π fW(t)

+ t
∥∥∥∥ ≤ ∥∥∥∥∇ fW(t)

2π
+ t
∥∥∥∥+( 1

fW(t)
− 1
)∥∥∥∥∇ fW(t)

2π

∥∥∥∥
≤ 4ε1/4

2π
‖t‖+

(1− fW(t)
fW(t)

)(
1 +

4ε1/4

2π

)
‖t‖

≤ 2
3

ε1/4‖t‖+ 4
3

(1− fW(t)
fW(t)

)
‖t‖

≤ ε1/4‖t‖ ,

as needed.

Claim 4.8. Let ε ∈ (0, 1/200) and L ⊂ Rn be a lattice with ρ(L) = 1 + ε. Let sε =
( 1

π log 2(1+ε)
ε

)1/2,
δmax = 1

2 −
2

πs2
ε
, and W = (w1, . . . , wN) be vectors in L∗. Suppose that for some γ > 0 and t ∈ Rn it

holds that

1. ‖t‖ ≤ min{δmaxsε,
√

log(1/(4γ))/π},

2. ‖∇ fW(t)−∇ f (t)‖ ≤ π
2 γ‖t‖, and

3. | fW(t)− f (t)| ≤ γ.

Then, ∥∥∥ ∇ fW(t)
2π fW(t)

− ∇ f (t)
2π f (t)

∥∥∥ ≤ 2γ

ρ(t)
‖t‖ .

Proof. By Lemma 2.14 and the first assumption, we see that f (t) ≥ ρ(t) ≥ 4γ.
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By the triangle inequality∥∥∥ ∇ fW(t)
2π fW(t)

− ∇ f (t)
2π f (t)

∥∥∥ =
∥∥∥∇ fW(t)−∇ f (t)

2π f (t)
f (t)

fW(t)
+
∇ f (t)
2π f (t)

( f (t)
fW(t)

− 1
)∥∥∥

≤
∥∥∥∇ fW(t)−∇ f (t)

2π f (t)

∥∥∥ f (t)
fW(t)

+
∥∥∥ ∇ f (t)

2π f (t)

∥∥∥ ∣∣∣∣ f (t)
fW(t)

− 1
∣∣∣∣ . (10)

For the first term in (10), by the second and third assumption, we have∥∥∥∇ fW(t)−∇ f (t)
2π f (t)

∥∥∥ f (t)
fW(t)

≤ γ‖t‖
4 f (t)

· f (t)
f (t)− γ

=
γ

4( f (t)− γ)
‖t‖ . (11)

For the second term in (10), by Corollary 4.3 and the first and third assumption,∥∥∥ ∇ f (t)
2π f (t)

∥∥∥ ∣∣∣∣ f (t)
fW(t)

− 1
∣∣∣∣ ≤ 5

4
‖t‖

(
f (t)

f (t)− γ
− 1
)
=

5γ

4( f (t)− γ)
‖t‖ . (12)

Combining (10), (11), and (12) together, we have∥∥∥ ∇ fW(t)
2π fW(t)

− ∇ f (t)
2π f (t)

∥∥∥ ≤ 6
4

γ

f (t)− γ
‖t‖ ≤ 2γ

ρ(t)
‖t‖ ,

as needed.

Lemma 4.9. For L ⊂ Rn a lattice, W = (w1, . . . , wN) sampled independently from DL∗ , t ∈ Rn, and
s ≥ 0,

Pr[‖∇ fW(t)−∇ f (t)‖ > s‖t‖] ≤ 2−Ω(N min(s,s2))+O(n) .

Proof. For any i and any unit vector v,

|〈∇ f{wi}(t), v〉| = 2π|〈wi, v〉 sin(2π〈wi, t〉)| ≤ 4π2|〈wi, v〉〈wi, t〉| .

It follows from the subgaussianity of the discrete Gaussian and Corollary 2.23 that 〈∇ f{wi}(t), v〉/‖t‖
is subexponential with parameter O(1). Applying Lemma 2.24, we get that

Pr[|〈∇ fW(t)−∇ f (t), v〉| > (s/2)‖t‖] ≤ 21−Ω(N min(s,s2)) .

By Lemma 2.28, there is a 1
2 -net of the sphere, A with |A| = 2O(n). Taking a union bound over A

and applying Lemma 2.29 gives

Pr[‖∇ fW(t)−∇ f (t)‖ > s‖t‖] ≤ 2−Ω(N min(s,s2))+O(n),

as needed.

Lemma 4.10. LetL ⊂ Rn be a lattice with ρ(L) = 1+ ε with ε ∈ (0, 1/200). Let sε =
( 1

π log 2(1+ε)
ε

)1/2.
Let W = (w1, . . . , wN) be sampled independently from DL∗ . Then, for ε2 ≤ s ≤ 10, if N ≥ Ω(n log(1/ε)/s2),

Pr[∃t ∈ Rn, ε1/8/(1000n) ≤ ‖t‖ ≤ sε : ‖∇ fW(t)−∇ f (t)‖ > s‖t‖] ≤ 2−Ω(Ns2) .
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Proof. We wish to find a set a vectors A = {tj} such that for any t with ε1/8/(1000n) ≤ ‖t‖ ≤ sε,
there is a tj ∈ A with ‖t− tj‖ ≤ s‖tj‖/100. For i = −dlog ne − dlog 1/εe − 10 to dlog sεe, let Ai

be a (eis/100)-net of the shell of inner radius radius ei and outer radius ei+1. By Lemma 2.28, we
can take |Ai| = 2O(n log(1/ε)). Let A = ∪Ai. There are O(log n + log(1/ε)) such nets, so |A| =
2O(n log(1/ε)).

We show that two bounds hold with high probability.

1. By Lemma 4.6, ‖∇ fW(x) −∇ fW(y)‖ ≤ 3π‖x − y‖ holds simultaneously for all x, y ∈ Rn

with probability at least 1− 2−Ω(N).

2. By Lemma 4.9 and union bound over A, ‖∇ fW(tj)−∇ f (tj)‖ ≤ s‖tj‖/10 holds simultane-
ously for all tj with probability at least 1− 2−Ω(Ns2)+O(n log(1/ε)).

Suppose that both bounds hold, which happens with probability at least 1− 2−Ω(Ns2). For a
target vector t with ε1/8/(1000n) ≤ ‖t‖ ≤ sε, let tj be the closest vector to t in A. Then, by the
first bound, ‖∇ fW(t)−∇ fW(tj)‖ ≤ 3π‖t− tj‖ ≤ s‖tj‖/10. Again, using Lemma 4.6, ‖∇ f (t)−
∇ f (tj)‖ ≤ s‖tj‖/10. Applying triangle inequality repeatedly and noting that ‖tj‖ ≤ e‖t‖,

‖∇ fW(t)−∇ f (t)‖ ≤ s‖tj‖/5 + ‖∇ fW(tj)−∇ f (tj)‖
≤ s‖t‖ .

Lemma 4.11 (Implicit in [AR05, Lemma 1.3]). For a lattice L ⊂ Rn, W = (w1, . . . , wN) sampled
independently from DL∗ , t ∈ Rn, and s ≥ 0,

Pr[| fW(t)− f (t)| > s] ≤ 21−Ω(Ns2) .

Proof. The result follows immediately from Lemma 2.25 (the Chernoff-Hoeffding bound) and the
definitions of fW(t) and f (t) (see Eqs. (2) and (3)).

Lemma 4.12. Let L ⊂ Rn be a lattice with ρ(L) = 1 + ε for ε ∈ (0, 1/200). Let sε =
( 1

π log 2(1+ε)
ε

)1/2.
Let W = (w1, . . . , wN) be sampled independently from DL∗ . Then, for ε2 ≤ s ≤ 10, if N ≥ Ω(n log(1/ε)/s2),

Pr[∃t, ‖t‖ ≤ sε : | fW(t)− f (t)| > s] ≤ 2−Ω(Ns2) .

Proof. Our proof is quite similar to that of Lemma 4.10. Let A be a s/(100sε)-net of the ball of
radius δmaxsε. By Lemma 2.28, and since s ≥ ε2, we can take |A| ≤ (1 + 200s2

ε /s)n = 2O(n log(1/ε)).
The following events hold with high probability.

1. By Lemma 4.6, we have that | fW(x) − fW(y)| ≤ 3πsε‖x − y‖ holds simultaneously for all
x, y ∈ Rn with ‖x‖, ‖y‖ ≤ sε with probability at least 1− 2−Ω(N).

2. By Lemma 4.11 and union bound, we have that | fW(tj)− f (tj)| ≤ s/10 holds simultaneously
for all tj ∈ A with probability at least 1− 2−Ω(s2 N)+O(n log(1/ε)).
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Suppose that both bounds hold, which happens with probability at least 1− 2−Ω(s2 N). For a
target vector t with ‖t‖ ≤ sε, let tj be the closest point to t in A. From the first event, we have that
| fW(t)− fW(tj)| ≤ 3πsε‖t− tj‖ < s/10. Similarly, by Lemma 4.6, we have | f (t)− f (tj)| < s/10.
Then, using the triangle inequality,

| fW(t)− f (t)| ≤ | fW(t)− fW(tj)|+ | fW(tj)− f (tj)|+ | f (tj)− f (t)|
< s/10 + s/10 + s/10
< s .

Proof of Proposition 3.2. Lemma 4.7 shows that the proposition is satisfied for all t with ‖t‖ ≤
ε1/8/(1000n) with probability at least 1− 2−Ω(n). So, we consider the case when ε1/8/(1000n) ≤
‖t‖ ≤ δmaxsε. By Lemma 2.14, for such t,

f (t) ≥ ρ(t) ≥ e−πδ2
maxs2

ε > εδ2
max/2 ≥ ε1/4/2 . (13)

We first show that the estimators fW ,∇ fW are close to their expectations.

1. By Lemma 4.10, we have that ‖∇ fW(t) −∇ f (t)‖ ≤ ε1/4‖t‖/100 holds simultaneously for
all t with ε1/8/(1000n) ≤ ‖t‖ ≤ δmaxsε with probability at least 1− 2−Ω(ε1/2 N) = 1− 2−Ω(n).

2. By Lemma 4.12, we have that | fW(t)− f (t)| ≤ ε1/4/100 holds simultaneously for all relevant
t with probability at least 1− 2−Ω(ε1/2 N) = 1− 2Ω(n).

Suppose that both of these bounds hold, which happens with probability at least 1− 2Ω(n).
Then, applying Claim 4.8 with γ = ε1/4/100, we have that for all relevant t,∥∥∥ ∇ fW(t)

2π fW(t)
+ t
∥∥∥ ≤ 2γ

ρ(t)
‖t‖+

∥∥∥ ∇ f (t)
2π f (t)

+ t
∥∥∥

≤ ε1/4

50
· eπ‖t‖2

‖t‖+ 12(ε/2)1−2δ(t)‖t‖ (Corollary 4.3)

≤ ε1/4

50
·
(2(1 + ε)

ε

)δ(t)2

‖t‖+ 12ε1−2δ(t)‖t‖

≤ ε1/4−δ(t)2

40
· ‖t‖+ 9ε(1−2δ(t))/4

10
· ‖t‖

≤ ε(1−2δ(t))/4‖t‖ ,

as needed. In the next-to-last inequality we used the straightforward inequality 12ε3(1−2δmax)/4 =
12 exp(−3 log(1/ε)/(πs2

ε )) < 9/10.

5 Reduction from CVPP to CVPP with a Promise

In this section, we present our Kannan-style reductions from γ′-CVPP to γ-CVPPφ.
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Theorem 5.1. Let γ(n) ≥ 1, and let α(n) > 0 be a non-increasing function. Then, a polynomial-
time algorithm that solves γ-CVPPφ, where φ(L) = α(n) · λ1(L) for any lattice L of rank n, implies a
polynomial-time algorithm that solves γ′-CVPP, where

γ′(n) := max
i∈{0,...,n}

(
γ(n− i)2 +

i
4α(n)2

)1/2

with the convention that γ(0) = 0. In particular, if α(n) ≤ 1/2 and γ(n) =
√

n/(2α(n)), we have
γ′(n) = γ(n).

The reduction of Theorem 5.1 uses as preprocessing an HKZ basis and the preprocessing of the
underlying γ-CVPPφ algorithm on n lattices of dimension O(n), so it incurs a blowup of roughly n
in the size of the preprocessing. We now present a more elaborate reduction based on similar ideas
that incurs almost no blowup in the size of preprocessing for an appropriate setting of parameters.

Theorem 5.2. Let 0 < α(n) ≤ 1/2 be a non-increasing function and g(n) ≥ 1 be a non-decreasing
function. Let γ(n) = g(n)h(n)/(2α(n)) where 0 ≤ h(n) < n is a non-decreasing integer-valued function
satisfying g(n)h(n)−1 ≤

√
n. Let γ′(n) = g(n)

√
n/(2α(n)) and φ(L) = α(n)λ1(L) for any lattice L

of rank n. Then, a polynomial-time algorithm that solves γ-CVPPφ implies a polynomial-time algorithm
that solves γ′-CVPP using as preprocessing only an HKZ basis of the input lattice and the preprocessing of
the γ-CVPPφ algorithm for a collection of lattices {Lk} with ∑ dimLk ≤ n · (h(n) + 1), where n is the
dimension of the input lattice.

Of particular interest to us is the special case g(n) = 1 and h(n) = 0 in Theorem 5.2, which we
highlight in the following corollary. With these parameters, the reduction achieves ∑ dimLk = n,
which is intuitively optimal.

Corollary 5.3. Let 0 < α(n) < 1/2 be a non-increasing function and define γ(n) =
√

n/(2α(n)). Then,
there is a polynomial-time reduction from γ-CVPP to α-BDDP that uses as preprocessing an HKZ basis
of the input lattice and the preprocessing of the α-BDDP algorithm for a collection of lattices {Lk} with
∑ dimLk = n, where n is the dimension of the input lattice.

Another interesting special case, obtained by setting g(n) = 2 and h(n) = b(log2 n)/2c + 1,
gives a reduction that matches the approximation factor γ achieved by Theorem 5.1 up to a factor
of 2 but incurs only a logarithmic blow-up in preprocessing, ∑ dimLk ≤ O(n log n) (as opposed
to linear). Finally, setting g(n) = n1/(2m) and h(n) = m + 1 for any integer m ≥ 1 gives a reduction
with γ′(n) = γ(n) = n1/2+1/(2m)/(2α(n)) that achieves O(m) blow-up, ∑ dimLk ≤ (m + 2) · n.

Lastly, we show that similar ideas can be made to work without preprocessing with worse
parameters.

Proposition 5.4. Let γ(n) ≥ g(n)
√

n + 3/2 where g(n) ≥ 1 is a non-decreasing function. Let φ(L) =
λ1(L) for any lattice. Then, there is a polynomial-time reduction from γ-CVP to g-CVPφ.

5.1 Proof of Theorem 5.1

Proof of Theorem 5.1. Suppose that we have an efficient algorithm that solves γ-CVPPφ with pre-
processing algorithm P and query algorithm Q. We assume without loss of generality that γ(1) =
1. We construct an algorithm that solves γ′-CVPP as follows.
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On input L ⊂ Rn, the preprocessing algorithm first computes an HKZ basis B = (b1, . . . , bn)
of L. For i = 0, . . . , n, let πi = π{b1,...,bi}⊥ and Ni = πi(L). Then, the preprocessing algorithm
returns as its advice B and the advice strings Ai = P(Ni) for all i.

On input t ∈ Rn, the query algorithm does the following for each i = 0, . . . , n. It computes
xi = Q(Ai, πi(t)) ∈ Ni. Write xi = ∑n

j=i+1 ai,jπi(bj) for some coefficients ai,j ∈ Z and let yi =

∑n
j=i+1 ai,jbj ∈ L be a “lift” of xi. LetMi = L(b1, . . . , bi) ⊆ L and

zi = BABAI(πspan(Mi)(t− yi), (b1, . . . , bi)) ∈ L.

The query algorithm then returns the vector nearest to the target t among the vectors yi + zi ∈ L.
In other words, for each i = 0, . . . , n, we use BABAI to compute a close point to t in Mi + yi =
{w ∈ L : πi(w) = xi} ⊆ L, and output the closest.

Clearly, the advice from preprocessing has polynomial length and the query algorithm runs
in polynomial time. Let i ∈ {0, . . . , n− 1} be minimal such that dist(πi(t),Ni) < φ(Ni) = α(n−
i) · ‖b̃i+1‖, where (b̃1, . . . , b̃n) is the Gram-Schmidt orthogonalization of B. If no such i exists, we
take i to be n. We will complete the proof by showing that yi + zi is close to t. By separating the
norm into its projection on the two orthogonal subspaces,

‖yi + zi − t‖2 = ‖πi(yi − t)‖2 + ‖πspan(Mi)(yi + zi − t)‖2

= ‖xi − πi(t)‖2 + ‖zi − πspan(Mi)(t− yi)‖2 .

For the first term, using the definition of γ-CVPPφ and our choice of i, we have that

‖xi − πi(t)‖2 ≤ γ(n− i)2 dist(πi(t),Ni)
2 ≤ γ(n− i)2 dist(t,L)2 .

For the second term, by Lemma 2.26 and again by our choice of i,

‖zi − πspan(Mi)(t− yi)‖2 ≤ i
4

max
j<i
‖b̃j+1‖2

≤ i
4

max
j<i

1
α(n− j)2 dist(πj(t),Nj)

2

≤ i
4α(n)2 · dist(t,L)2 .

The theorem follows by combining the two inequalities.

5.2 Proof of Theorem 5.2

Proof of Theorem 5.2. Suppose that we have an algorithm that solves γ-CVPPφ in polynomial time
with preprocessing algorithm P and query algorithm Q. We construct an algorithm that solves
γ′-CVPP as follows.

On input L ⊂ Rn a lattice of rank n, the preprocessing algorithm first computes an HKZ basis
B = (b1, . . . , bn) of L with Gram-Schmidt orthogonalization (b̃1, . . . , b̃n). Fix r = h(n) + 1 and
c = g(n). We define a series of indices n = i0 > i1 > i2 > · · · > i` = 0 in the following recursive
way: for each k such that ik > 0, define 0 ≤ ik+1 < ik to be minimal such that

‖b̃ik+1+1‖ ≥ max
j≤ik
‖b̃j‖/c ,
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or equivalently, the largest such that

max
j≤ik+1

‖b̃j‖ < max
j≤ik
‖b̃j‖/c . (14)

Notice that we have
max
j≤ik
‖b̃j‖/c ≤ ‖b̃ik+1+1‖ ≤ max

j≤ik
‖b̃j‖ . (15)

Let πk = π{b1,...,bik
}⊥ and Lk = πk(L(bik+1, . . . , bimax(k−r,0)

)). Then, the preprocessing algorithm
returns as its advice B and the advice strings Ak = P(Lk) for all k. Notice that each vector bj
is included in the definition of Lk for at most r = h(n) + 1 different values of k. As a result,
∑ dimLk ≤ n · (h(n) + 1) as claimed.

Let Nk = πk(L). Before describing the query algorithm, we define a key recursive sub-
procedure S(t, k) that will be used to find solutions to γ-CVPφ(πk(t),Nk). On input t and k,
if k ≤ r, then S simply outputs Q(Ak, πk(t)). Otherwise, it calls itself recursively, setting x =
S(t, k− r) ∈ Nk−r. Write x = ∑n

j=ik−r+1 ajπk−r(bj), and let y = ∑n
j=ik−r+1 ajπk(bj) ∈ Nk be a “lift”

of x. Then S outputs z = Q(Ak, πk(t)− y) + y. In other words, S uses Q to find a close point to
πk(t) in Lk + y = {w ∈ Nk : πk−r(w) = x} ⊆ Nk and outputs it.

On input t ∈ Rn, the query algorithm does the following for each k. It first computes xk =
S(t, k) ∈ Nk. Let yk ∈ L be a “lift” of xk. LetMk = L(b1, . . . , bik) ⊆ L and

zk = BABAI(πspan(Mk)(t− yk),Mk) ∈ L.

The query algorithm then returns the vector nearest to the target t among the vectors yk + zk ∈ L.
In other words, for each k, we use BABAI to compute a close point to t inMk + yk = {w ∈ L :
πk(w) = xk} ⊆ L, and output the closest. It is clear that the algorithm runs in polynomial time.

First, assume that S(t, k) returns a valid solution to γ-CVPφ(πk(t),Nk). Then, the proof of
correctness proceeds nearly identically to that of Theorem 5.1. In particular, let k > 0 be maximal
such that dist(t,L) < α(n)‖b̃ik+1‖. If no such k exists, we take k = 0. As in the previous proof,

‖yk + zk − t‖2 = ‖πk(yk − t)‖2 + ‖zk − πspan(Mk)(t− yk)‖2 .

For the first term, since dist(πk(t),Nk) ≤ dist(t,L) < α(n)‖b̃ik+1‖ ≤ φ(Nk), we have

‖xk − πk(t)‖2 ≤ γ(n− ik)
2 dist(πk(t),Nk)

2

≤ γ′(n− ik)
2 dist(πk(t),Nk)

2 ≤ c2 n− ik

4α(n)2 dist(t,L)2 .

For the second term, by Lemma 2.26, Eq. (15), and our choice of k,

‖zk − πspan(Mk)(t− yk)‖2 ≤ ik

4
max
j≤ik
‖b̃j‖2 ≤ c2 ik

4
‖b̃ik+1+1‖2 ≤ c2 ik

4α(n)2 dist(t,L)2 .

Combining the two inequalities, we get ‖yk + zk − t‖ ≤ γ′(n)dist(t,L).
It remains to show that the sub-procedure S(t, k) returns a valid solution to γ-CVPφ(πk(t),Nk).

We prove this by induction. If k ≤ r, the claim follows immediately from the fact that Lk = Nk.
Otherwise, we claim that Lk + y contains the closest vector to πk(t) inNk. This claim immediately
implies the correctness of S using the correctness of Q and the fact that γ(dimLk) ≤ γ(dimNk)
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and φ(Lk) ≥ φ(Nk). To prove the claim, first notice from Eqs. (14) and (15) that ‖b̃ik+1‖ ≤
‖b̃ik−r+1‖/cr−1, and so

dist(πk(t),Nk) < φ(Nk) = α(n− ik)‖b̃ik+1‖ ≤
α(n− ik)

cr−1 · ‖b̃ik−r+1‖ =
α(n− ik)

cr−1 · λ1(Nk−r) . (16)

As a result, dist(πk−r(t),Nk−r) ≤ dist(πk(t),Nk) < φ(Nk−r), and so by the induction hypothesis
and Eq. (16),

‖x− πk−r(t)‖ ≤ γ(n− ik−r)dist(πk−r(t),Nk−r)

≤ cr−1

2α(n− ik)
dist(πk−r(t),Nk−r)

≤ cr−1

2α(n− ik)
dist(πk(t),Nk)

<
λ1(Nk−r)

2
.

So, x is the unique closest vector in Nk−r to πk−r(t). Finally, by Eq. (16), dist(πk(t),Nk) <
λ1(Nk−r)/2, yet all vectors y′ ∈ Nk \ (Lk + y) must be at distance at least

‖πk−r(y′)− πk−r(t)‖ ≥ λ1(Nk−r)− dist(πk−r(t),Nk−r) >
λ1(Nk−r)

2

from πk(t) and hence cannot be closest to πk(t) in Nk.

5.3 Proof of Proposition 5.4

Proof of Proposition 5.4. Let A be an algorithm solving g-CVPφ. We say that a basis B = (b1, . . . , bn)
ofL is a g-HKZ basis if ‖b1‖ ≤ g(n)λ1(L) and (π{b1}⊥(b2), . . . , π{b1}⊥(bn)) is a g-HKZ basis. Note
that Theorem 2.8 immediately implies that A can be used to compute a g-HKZ basis in polynomial
time.

On input L and target vector t, first use A to compute a g-HKZ basis, B = (b1, . . . , bn) of L.
Then, as in the proof of Theorem 5.1, for i = 0, . . . , n, let πi = π{b1,...,bi}⊥ andNi = πi(L). Compute
xi = A(πi(t),Ni) ∈ Ni and lift it to a vector yi ∈ L. Similarly, letMi = L(b1, . . . , bi) ⊆ L and

zi = BABAI(πspan(Mi)(t− yi), (b1, . . . , bi)) ∈ L.

Finally, return the vector nearest to the target t among the vectors yi + zi ∈ L.
Let i ∈ {0, . . . , n − 1} be minimal such that dist(πi(t),Ni) < ‖b̃i+1‖/g(n − i). If no such i

exists, we take i = n. As in the proof of Theorem 5.1,

‖yi + zi − t‖2 = ‖xi − πi(t)‖2 + ‖zi − πspan(Mi)(t− yi)‖2 .

By our choice of i and the definition of a g-HKZ basis, dist(πi(t),Ni) < λ1(Ni) = φ(Ni), so A is
guaranteed to output xi satisfying

‖xi − πi(t)‖2 ≤ g(n− i)2 dist(πi(t),Ni)
2 ≤ g(n− i)2 dist(t,L)2 ,
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where we define g(0) = 0. By Lemma 2.26,

‖zi−πspan(Mi)(t−yi)‖2 ≤ i
4

max
j<i
‖b̃j+1‖2 ≤ i

4
max

j<i
g(n− j)2 dist(πj(t),Nj)

2 ≤ i
4

g(n)2 dist(t,L)2 .

Combining the two inequalities gives

‖yi + zi − t‖2 ≤ g(n− i)2 dist(t,L)2 +
i
4

g(n)2 dist(t,L)2

≤ n + 3
4
· g(n)2 dist(t,L)2

= γ(n)2 dist(t,L)2

as claimed.

6 Reduction to bounded distance using sparsification

In this section we prove Theorem 6.1, our second reduction to the bounded distance case.

Theorem 6.1. For any τ = τ(n) > 0 and γ = γ(n) ≥ 1, there is a randomized polynomial-time
reduction from γ ·

√
1 + τ2-CVP to γ-CVPφ where φ(L) =

√
1 + τ−2 · λ1(L).

Note that for τ ≥
√

n− 1/2, Proposition 5.4 provides a strictly stronger reduction. The above
theorem and Theorem 2.6 (the NP-hardness of nc/ log log n-CVP) immediately imply a hardness
result for γ-CVPφ.

Corollary 6.2. There exists a constant c > 0 such that γ-CVPφ is NP-hard for φ(L) = (1+n−c/ log log n) ·
λ1(L) and γ = nc/ log log n.

We follow the sparsification idea of [DK13]. Basically, given a target t, we try to find a sublattice
L′ of L, such that L′ has minimum distance proportional to dist(t,L′) with dist(t,L′) not much
larger than dist(t,L). Notice that the first condition is needed to ensure that a distance-bounded
CVP solver will succeed on L′ and t, and the second condition allows us to bound the loss in
approximation when passing from L to L′. Implicit in the work of [DK13] is the fact that a random
sublattice L′ of L of index p (for an appropriate p) will work. To obtain the approximation factor
stated in the theorem, we actually work with a random coset of L′, and we also do a slightly more
careful analysis in order to avoid the loss incurred by a triangle inequality.

For a full rank lattice L with basis B, a prime p, a vector z ∈ Zn
p, and c ∈ Zp, we define

Lp,c(B, z) = {y ∈ L : 〈z, B−1y〉 = c (mod p)} ,

and Lp(B, z) = Lp,0(B, z). Note that Lp(B, z) is a sublattice of L and Lp,c(B, z) is a coset of
Lp(B, z). We wish to argue that, for any t and appropriate p, if z and c are chosen uniformly at ran-
dom, then with constant positive probability, λ1(Lp(B, z)) will be relatively large but dist(t,Lp,c(B, z))
will be relatively close to dist(t,L). The next lemma is a modification of [DK13, Lemma 4.3] more
suited to our purposes and is the key to the reduction.
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Lemma 6.3. Let r > 0, L ⊂ Rn a full rank lattice with basis B, N = |L ∩ rBn
2 |, and p > N a prime. Let

z be sampled uniformly from Zn
p, and define

C = {c ∈ Zp : |Lp,c(B, z) ∩ rBn
2 | > 0} .

Then,

• Pr
z
[λ1(Lp(B, z)) ≤ r] ≤ N

p
, and

• Pr
z

[
|C| ≤ ε · N

p + N − 1
· p
]
≤ ε for any ε ∈ (0, 1).

Proof. First, we wish to show that for any x ∈ (L ∩ 2rBn
2 ) \ {0}, 〈z, B−1x〉 is uniformly distributed

mod p over the choice of z. Let x = ∑ yibi and z = (z1, . . . , zn). Then, 〈z, B−1x〉 = ∑ ziyi. So,
it suffices to show that at least one yi is not 0 mod p, or equivalently that x /∈ pL. Suppose
x ∈ pL. Then there is some x′ ∈ L such that px′ = x, so clearly the vectors b−p/2cx′, b−p/2 +
1cx′, . . . , 0, . . . , bp/2cx′ are all in (L ∩ rBn

2 ). This contradicts the fact that there are exactly N < p
vectors in (L ∩ rBn

2 ). It follows that 〈z, B−1x〉 is uniformly distributed mod p over the choice of z.
Now, to prove the first result, let x ∈ (L ∩ rBn

2 ) \ {0}. Since 〈z, B−1x〉 is uniformly distributed
mod p, Prz[x ∈ Lp(B, z)] = 1/p. We simply apply union bound and recall the definition of N to
get Prz[λ1(Lp(B, z)) ≤ r] ≤ N/p as claimed.

To prove the second result, for c ∈ C let Sc = Lp,c(B, z) ∩ rBn
2 , and let

A =
⋃
c∈C

S2
c ,

the set of pairs of short vectors in the same coset. Then, recalling the definition of N and applying
Cauchy-Schwarz,

N2 =
(

∑
c∈C
|Sc|
)2
≤
(

∑
c∈C

1
)(

∑
c∈C
|Sc|2

)
= |C| · |A| .

Therefore |C| ≥ N2/|A|. So, it suffices to bound Pr[|A| ≥ N · (p + N − 1)/(εp)].
Let x, x′ ∈ (L∩ rBn

2 ) be distinct. Since x− x′ ∈ (L∩ 2rBn
2 ) \ {0}, it follows that 〈z, B−1(x− x′)〉

is uniformly distributed mod p over the choice of z. So, Pr[〈z, B−1x〉 = 〈z, B−1x′〉 (mod p)] =
1/p. Therefore,

E
z
[|A|] = N + N(N − 1)/p = N · p + N − 1

p
.

Applying Markov’s inequality,

Pr
z

[
|A| ≥ N · p + N − 1

εp

]
≤ ε ,

and the result follows.

Proof of Theorem 6.1. Let A be an algorithm that solves γ-CVPφ. Our input is a lattice L ⊂ Qn with
basis B and target vector t ∈ Rn. We assume without loss of generality that L is full rank. Let
r = τ dist(t,L), and N = |L ∩ rBn

2 | > 0. Our reduction needs to have a prime number p satisfying
2N ≤ p ≤ 8N. Since we do not know N, we simply run the reduction with each of polynomially
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many values for p, one of which is guaranteed to be in the right range, and then output the closest
of all lattice vectors we find. In more detail, assume τ <

√
n since otherwise the reduction already

follows from Proposition 5.4. By Lemma 2.1 and a simple packing argument, N is at most 2poly(`)

for some fixed polynomial in the bit length ` of the description of L. So it suffices to try for each
i = 1, . . . , poly(`), a prime p with 2i < p ≤ 2i+1. We now continue with the description of the
reduction assuming we know a prime p satisfying 2N ≤ p ≤ 8N.

With this, the reduction is straightforward. It samples z ∈ Zn
p and c ∈ Zp uniformly at random.

It then returns A(t− y,Lp(B, z))+ y where y is an arbitrary point in Lp,c(B, z). I.e., we find a close
vector to t in the coset Lp,c(B, z).

By Lemma 6.3, we have that λ1(Lp(B, z)) > r and |C| ≥ p/50 where

C = {c′ ∈ Zp : |Lp,c′(B, z) ∩ rBn
2 | > 0} ,

with probability at least 1/4 over the choice of z. Suppose both of these hold.
Let x ∈ L be the closest lattice vector to t, and for each coset c′, let yc′ ∈ Lp,c′(B, z) be a

closest vector in Lp,c′(B, z) to x. If there are multiple choices for yc′ , we take one that maximizes
〈x − yc′ , x − t〉. We wish to argue that, with positive constant probability over the choice of the
random coset c, both (1) ‖x − yc‖ ≤ r and (2) 〈x − yc, x − t〉 ≥ 0 hold. Since Lp,c(B, z) − x is
a uniformly distributed random coset, our assumption on |C| implies that at least p/50 cosets
satisfy condition (1). Let c∗ be such that x ∈ Lp,c∗(B, z). Note that for all c′, 2x− yc′ is a closest
vector to x in Lp,2c∗−c′(B, z). It follows that ‖x− y2c∗−c′‖ = ‖x− yc′‖, and if 〈x− yc′ , x− t〉 < 0,
then 〈x− y2c∗−c′ , x− t〉 ≥ 〈x− (2x− yc′), x− t〉 > 0. It follows that for each coset c′ that satisfies
(1) but not (2), 2c∗ − c′ satisfies both (1) and (2). Since the map c′ 7→ 2c∗ − c′ is a bijection on Zp,
we obtain that with probability 1/100 over the choice of the coset c, both (1) and (2) hold. When
this is the case, by expanding the squared norm as an inner product, we have

‖yc − t‖2 = ‖(x− t)− (x− yc)‖2

≤ ‖x− t‖2 + ‖x− yc‖2

≤ (1 + τ2)dist(t,L)2 .

Finally, note that
√

1 + τ2 dist(t,L) =
√

1 + τ−2 · τ dist(t,L) < φ(Lp(B, z)). So, by the definition
of A, the distance of our output from t is at most

γ · ‖yc − t‖ ≤ γ ·
√

1 + τ2 dist(t,L) .

It follows that the reduction succeeds with probability at least 1/400.

7 Local Maxima of f (t)

Claim 7.1. For any sufficiently large n there exists a lattice L ⊂ Rn such that the function f has a local
maximum that is not a global one. Furthermore, the local maximum is at distance λ1(L)/

√
2 from the

lattice, and the value of f at this point is exponentially close to 1 (the value at global maxima).

Proof. Let e1, . . . , en be the standard basis of Rn, and let L = {z ∈ Zn : ∑〈ei, z〉 ≡ 0 mod 2}.
Note that the shortest non-zero vectors of L are of the form ei + ej, i 6= j, and hence λ1(L) =

√
2.

Then, it is easy to see that L∗ = Zn ∪ (Zn + u), where u = ∑n
i=1 ei/2.
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Let t be any point in Zn \ L, say t = (1, 0, . . . , 0). Note that dist(L, t) = 1 = λ1(L)/
√

2. Since
f is a periodic function and 2t ∈ L, ∇ f (t) = ∇ f (−t). On the other hand, ∇ f is an odd function,
and therefore ∇ f (t) = 0.

We will now show that f (t) approaches f (0) = 1 as n approaches ∞ by exploiting the mul-
tiplicative structure of ρ on Zn and Zn + u. In particular, ρ(Zn) = ρ(Z)n and ρ(Zn + u) =
ρ(Z + 1/2)n. So,

f (t) = E
w∼DL∗

[cos(2π〈w, t〉)]

=
1

ρ(L∗) · (ρ(Z
n)− ρ(Zn + u))

=
1

ρ(L∗) ·
(
ρ(Z)n − ρ(Z + 1/2)n) .

Similarly, we have that

f (0) =
1

ρ(L∗) ·
(
ρ(Z)n + ρ(Z + 1/2)n) = 1 .

Since, ρ(Z + 1/2) < ρ(Z) the difference between f (0) and f (t) is exponentially small in n.
It remains to show that H f (t) is negative definite. Note that

H f (t) = −4π2 E
w∼DL∗

[wwT cos(2π〈w, t〉)]

= − 4π2

ρ(L∗) ·
(

∑
z∈Zn

zzTρ(z)− ∑
z∈Zn+u

zzTρ(z)
)

.

Again exploiting the multiplicative structure of ρ on Zn and Zn + u, we have

∑
z∈Zn

zzTρ(z) = In · ∑
z∈Zn

z2
1ρ(z)

= In · ρ(Z)n−1 ∑
z∈Z

z2ρ(z) .

A similar calculation shows that

∑
z∈Zn+u

zzTρ(z) = In · ρ(Z + 1/2)n−1 ∑
z∈Z

(z + 1/2)2ρ(z + 1/2) .

The result then follows by again noting that ρ(Z + 1/2) < ρ(Z), so for sufficiently large n, the
ρ(Z)n−1 term dominates. (In fact, n = 7 suffices.)
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