59 research outputs found
All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator.
We demonstrate a glucose sensor based on an organic electrochemical transistor (OECT) in which the channel, source, drain, and gate electrodes are made from the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS). The OECT employs a ferrocene mediator to shuttle electrons between the enzyme glucose oxidase and a PEDOT:PSS gate electrode. The device can be fabricated using a one-layer patterning process and offers glucose detection down to the micromolar range, consistent with levels present in human saliva
A Chemical Genomics Approach to Drug Reprofiling in Oncology: Antipsychotic Drug Risperidone as a Potential Adenocarcinoma Treatment
Drug reprofiling is emerging as an effective paradigm for discovery of cancer treatments. Herein, an antipsychotic drug is immobilised using the Magic Tag® chemical genomics tool and screened against a T7 bacteriophage displayed library of polypeptides from Drosophila melanogaster, as a whole genome model, to uncover an interaction with a section of 17-β-HSD10, a proposed prostate cancer target. A computational study and enzyme inhibition assay with full length human 17-β-HSD10 identifies risperidone as a drug reprofiling candidate. When formulated with rumenic acid, risperidone slows proliferation of PC3 prostate cancer cells in vitro and retards PC3 prostate cancer tumour growth in vivo in xenografts in mice, presenting an opportunity to reprofile risperidone as a cancer treatment
Severe malaria in children leads to a significant impairment of transitory otoacoustic emissions--a prospective multicenter cohort study.
BACKGROUND: Severe malaria may influence inner ear function, although this possibility has not been examined prospectively. In a retrospective analysis, hearing impairment was found in 9 of 23 patients with cerebral malaria. An objective method to quickly evaluate the function of the inner ear are the otoacoustic emissions. Negative transient otoacoustic emissions are associated with a threshold shift of 20 dB and above. METHODS: This prospective multicenter study analyses otoacoustic emissions in patients with severe malaria up to the age of 10 years. In three study sites (Ghana, Gabon, Kenya) 144 patients with severe malaria and 108 control children were included. All malaria patients were treated with parental artesunate. RESULTS: In the control group, 92.6 % (n = 108, 95 % confidence interval 86.19-6.2 %) passed otoacoustic emission screening. In malaria patients, 58.5 % (n = 94, malaria vs controls p < 0.001, 95 % confidence interval 48.4-67.9 %) passed otoacoustic emission screening at the baseline measurement. The value increased to 65.2 % (n = 66, p < 0.001, 95 % confidence interval 53.1-75.5 %) at follow up 14-28 days after diagnosis of malaria. The study population was divided into severe non-cerebral malaria and severe malaria with neurological symptoms (cerebral malaria). Whereas otoacoustic emissions in severe malaria improved to a passing percentage of 72.9 % (n = 48, 95 % confidence interval 59-83.4 %) at follow-up, the patients with cerebral malaria showed a drop in the passing percentage to 33 % (n = 18) 3-7 days after diagnosis. This shows a significant impairment in the cerebral malaria group (p = 0.012 at days 3-7, 95 % confidence interval 16.3-56.3 %; p = 0.031 at day 14-28, 95 % confidence interval 24.5-66.3 %). CONCLUSION: The presented data show that 40 % of children have involvement of the inner ear early in severe malaria. In children, audiological screening after severe malaria infection is not currently recommended, but is worth investigating in larger studies
Recommended from our members
Nanotemplating of biodegradable polymer membranes for constant-rate drug delivery.
(Figure Presented) A nanoporous biodegradable polymer (polycaprolactone) is fabricated utilizing a zinc oxide nanotemplate (see figure). Chemical characterization verifies removal of the template, and preliminary tests on the cytotoxicity demonstrate basic biocompatibility. Diffusion of a model small molecule and a protein are shown to be first and zero order, respectively, indicating these nanoporous membranes may be useful for controlled release of protein-based therapeutics. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Nanoscale porosity in polymer films: fabrication and therapeutic applications.
This review focuses on current developments in the field of nanostructured bulk polymers and their application in bioengineering and therapeutic sciences. In contrast to well-established nanoscale materials, such as nanoparticles and nanofibers, bulk nanostructured polymers combine nanoscale structure in a macroscopic construct, which enables unique application of these materials. Contemporary fabrication and processing techniques capable of producing nanoporous polymer films are reviewed. Focus is placed on techniques capable of sub-100 nm features since this range approaches the size scale of biological components, such as proteins and viruses. The attributes of these techniques are compared, with an emphasis on the characteristic advantages and limitations of each method. Finally, application of these materials to biofiltration, immunoisolation, and drug delivery are reviewed
- …