82 research outputs found

    A work-in-progress on technologically expanded performance

    Get PDF
    UID/EAT/00693/2019 PTDC/ART-PER/31263/2017 CEECIND/02302/2017Embodying Sound is a performing art project that integrates dance, music and digital technology, it explores a real-time sonification of human motion, captured by inertial sensors, using the XSens system. First and foremost, it is not a demonstration of technical virtuosity, but an attempt to put technology at the service of imagination and creativity. In a world dominated by computation - tending to a dystopic future of "artificial intelligences" (Minsky, 1998) we tend to forget that present-day machines cannot really think or feel; Computers do not have purposes, do not love or understand reality the way a living organism does (c.f. António Damásio 2017). In this presentation, we explore how technology can act as a mediator between dance and music. The quest of this performative process is to investigate the sound signature of the body. Here we discuss how such phenomenological experience might challenge self-consciousness and the perception of identity. Furthermore, within a more general approach, we question how does this artistic and technological interaction stimulate the expansion of artistic expression, which might result in new aesthetics.publishersversionpublishe

    Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldmann, K., Boeddinghaus, R. S., Klemmer, S., Regan, K. M., Heintz-Buschart, A., Fischer, M., Prati, D., Piepho, H., Berner, D., Marhan, S., Kandeler, E., Buscot, F., & Wubet, T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22(3),(2020): 873-888, doi:10.1111/1462-2920.14653.Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha‐ and beta‐diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta‐diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.We thank the managers of the three Exploratories, Kirsten Reichel‐Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi and Andreas Ostrowski for managing the central data base, and Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Ernst‐Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 ‘Infrastructure‐Biodiversity‐Exploratories’ (BU 941/22‐1, BU 941/22‐3, KA 1590/8‐2, KA 1590/8‐3). Field work permits were issued by the responsible state environmental office of Baden‐Württemberg (according to § 72 BbgNatSchG). Likewise, we kindly thank Beatrix Schnabel, Melanie Günther and Sigrid Härtling for 454 sequencing in Halle. AHB gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig funded by the German Research Foundation (FZT 118). Authors declare no conflict of interests

    Effects of warming and drought on potential N2O emissions and denitrifying bacteria abundance in grasslands with different land-use

    Get PDF
    Increased warming in spring and prolonged summer drought may alter soil microbial denitrification. We measured potential denitrification activity and denitrifier marker gene abundances (nirK, nirS, nosZ) in grasslands soils in three geographic regions characterized by site-specific land-use indices (LUI) after warming in spring, at an intermediate sampling and after summer drought. Potential denitrification was significantly increased by warming, but did not persist over the intermediate sampling. At the intermediate sampling, the relevance of grassland land-use intensity was reflected by increased potential N2O production at sites with higher LUI. Abundances of total bacteria did not respond to experimental warming or drought treatments, displaying resilience to minor and short-term effects of climate change. In contrast, nirS- and nirK-type denitrifiers were more influenced by drought in combination with LUI and pH, while the nosZ abundance responded to the summer drought manipulation. Land-use was a strong driver for potential denitrification as grasslands with higher LUI also had greater potentials for N2O emissions. We conclude that both warming and drought affected the denitrifying communities and the potential denitrification in grassland soils. However, these effects are overruled by regional and site-specific differences in soil chemical and physical properties which are also related to grassland land-use intensit

    Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation

    Get PDF
    Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly

    Forensic evaluation of the Asia Pacific ancestry-informative MAPlex assay

    Get PDF
    DNA intelligence, and particularly the inference of biogeographical ancestry (BGA) is increasing in interest, and relevance within the forensic genetics community. The majority of current MPS-based forensic ancestry-informative assays focus on the differentiation of major global populations. The recently published MAPlex (Multiplex for the Asia Pacific) panel contains 144 SNPs and 20 microhaplotypes and aims to improve the differentiation of populations in the Asia Pacific region. This study reports the first forensic evaluation of the MAPlex panel using AmpliSeq technology and Ion S5 sequencing. This study reports on the overall performance of MAPlex including the assay’s sequence coverage distribution and stability, baseline noise and description of problematic SNPs. Dilution series, artificially degraded and mixed DNA samples were also analysed to evaluate the sensitivity of the panel with challenging or compromised forensic samples. As the first panel to combine biallelic SNPs, multiple-allele SNPs and microhaplotypes, the MAPlex assay demonstrated an enhanced capacity for mixture detection, not easily performed with common binary SNPs. This performance evaluation indicates that MAPlex is a robust, stable and highly sensitive assay that is applicable to forensic casework for the prediction of BGAMdlP is supported by a postdoctoral fellowship awarded by the Consellería de Cultura, Educación e Ordenación Universitaria and the Consellería de Economía, Emprego e Industria from Xunta de Galicia (Modalidade A, ED481B 2017/088). CP, AFA, AMM, MdlP, MVL are supported by MAPA, Multiple Allele Polymorphism Analysis (BIO2016-78525-R), a research project funded by the Spanish Research State Agency (AEI), and co-financed with ERDF funds. AFA is supported by a post-doctorate grant funded by the Consellería de Cultura, Educación e Ordenación Universitaria e da Consellería de Economía, Emprego e Industria from Xunta de Galicia, Spain (Modalidade B, ED481B 2018/010). The 1000 Genomes high coverage sequence data were generated at the New York Genome Center with funds provided by NHGRI Grant 3UM1HG008901-03S1S

    Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland

    Get PDF
    Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent β-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture – the most important environmental variable – had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that – despite considerable oscillation in space and time – the abundant and resident OTUs provide a community backbone that supports much higher β-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland

    Analysis of Bacterial vaginosis, the vaginal microbiome, and sexually transmitted infections following the provision of menstrual cups in Kenyan schools: results of a nested study within a cluster randomized controlled trial

    Get PDF
    Abstract Background: Non-hygienic products for managing menstruation are reported to cause reproductive tract infections. Menstrual cups are a potential solution. We assessed whether menstrual cups would reduce Bacterial vaginosis (BV), vaginal microbiome (VMB), and sexually transmitted infections (STIs) as studies have not evaluated this. Methods and Findings: A cluster-randomized controlled trial was performed in 96 Kenyan secondary schools, randomized (1:1:1:1) to control, menstrual cup, cash transfer, or menstrual cup plus cash transfer. This sub-study assessing the impact of menstrual cups on BV, VMB, and STIs, included 6 schools from the control (3) and menstrual cup only (3) groups, both receiving BV and STI testing and treatment at each visit. Self-collected vaginal swabs were used to measure VMB (16S rRNA gene amplicon sequencing), BV (Nugent score), and STIs. STIs were a composite of Chlamydia trachomatis and Neisseria gonorrhoeae (nucleic acid amplification test)¸ and Trichomonas vaginalis (rapid immunochromatographic assay). Participants were not masked and were followed for 30 months. The primary outcome was diagnosis of BV; secondary outcomes were VMB and STIs. Intention to treat blinded analyses used mixed effects generalized linear regressions, with random effects term for school. The study was conducted between May 2, 2018, and Feb 7, 2021. 436 participants were included: 213 cup, 223 control. There were 289 BV diagnoses: 162 among control participants and 127 among intervention participants (odds ratio 0.76 [95% CI 0.59–0.98]; p=0.038). The occurrence of Lactobacillus crispatus dominated VMB was higher among cup group participants (odds ratio 1.37 [95% CI 1.06–1.75]), as was the mean relative abundance of Lactobacillus crispatus (3.95% [95% CI 1.92–5.99]). There was no effect of intervention on STIs (relative risk 0.82 [95% CI 0.50–1.35]). The primary limitations of this study were insufficient power for sub-group analyses, and generalizability of findings to non-school and other global settings. Conclusions: Menstrual cups with BV and STI testing and treatment benefitted adolescent schoolgirls through lower occurrence of BV and higher L. crispatus compared with only BV and STI testing and treatment during the 30 months of a cluster-randomized menstrual cup intervention. ClinicalTrials.gov, NCT03051789

    Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands

    Get PDF
    Grassland management intensity influences nutrient cycling both directly, by changing nutrient inputs and outputs from the ecosystem, and indirectly, by altering the nutrient content, and the diversity and functional composition of plant and microbial communities. However, the relative importance of these direct and indirect processes for the leaching of multiple nutrients is poorly studied. We measured the annual leaching of nitrate, ammonium, phosphate and sulphate at a depth of 10 cm in 150 temperate managed grasslands using a resin method. Using Structural Equation Modeling, we distinguished between various direct and indirect effects of management intensity (i.e. grazing and fertilization) on nutrient leaching. We found that management intensity was positively associated with nitrate, ammonium and phosphate leaching risk both directly (i.e. via increased nutrient inputs) and indirectly, by changing the stoichiometry of soils, plants and microbes. In contrast, sulphate leaching risk was negatively associated with management intensity, presumably due to increased outputs with mowing and grazing. In addition, management intensification shifted plant communities towards an exploitative functional composition (characterized by high tissue turnover rates) and, thus, further promoted the leaching risk of inorganic nitrogen. Plant species richness was associated with lower inorganic nitrogen leaching risk, but most of its effects were mediated by stoichiometry and plant community functional traits. Maintaining and restoring diverse plant communities may therefore mitigate the increased leaching risk that management intensity imposes upon grasslands
    corecore