400 research outputs found
Design and testing of a microvalve capable of precisely controlling low fluidic flow rates
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 48).Development of the design, manufacture, and testing for a gas flow regulating microvalve is presented herein. The microvalve project served as a test bed for new micromachining techniques and for exploration of MEMS devices made from non-silicon materials. We developed and tested a novel microvalve utilizing a passive mechanical membrane that allows for accurate flow rate control over a wide range of inlet pressures, requiring power only to adjust the flow rate. Design considerations and functional analysis of a microvalve system are discussed, and manufacturing techniques analyzed. The design was verified by comparing the prototyped system to a commercially available mini ball valve. The valves were run through full actuation at varying pressures and the resulting flow was observed and characterized. At 0.69 MPa, the flexure valve prototype was shown to allow adjustments in flow between 1.0* 10-6 and 2.0* 106 m3/s over the period of about 8 seconds, allowing for a precision adjustment of flow not available in other valves. The experiment demonstrates that the new microvalve offers significant advantages in terms of a wider range of flow rate adjustment available within the operating pressure regime.by Cody R. Daniel and Toomas R. Sepp.S.B
Enabling GPU Accelerated Computing in the SUNDIALS Time Integration Library
As part of the Exascale Computing Project (ECP), a recent focus of
development efforts for the SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers (SUNDIALS) has been to enable GPU-accelerated time integration
in scientific applications at extreme scales. This effort has resulted in
several new GPU-enabled implementations of core SUNDIALS data structures,
support for programming paradigms which are aware of the heterogeneous
architectures, and the introduction of utilities to provide new points of
flexibility. In this paper, we discuss our considerations, both internal and
external, when designing these new features and present the features
themselves. We also present performance results for several of the features on
the Summit supercomputer and early access hardware for the Frontier
supercomputer, which demonstrate negligible performance overhead resulting from
the additional infrastructure and significant speedups when using both NVIDIA
and AMD GPUs
Stagnate summers : climate induced changes in physical mixing parameters in Missouri reservoirs
Lakes and reservoirs are important environmental sentinels for climate change. As air temperatures rise so do the temperatures of these water bodies affecting their physical, chemical, and biological properties. Being used for drinking water supplies, fisheries, and human recreation, these long term potential changes can be an important factor for their use. Climate change has been associated with altering physical reservoir parameters, such as mixing depth, water temperatures, and water chemistry. Using a historical dataset to find both break points and monotonic trends that may indicate climate having influenced our reservoirs we found little in terms of monotonic trends. However, we did witness changes in all systems in regards to break points for almost every parameter. Our systems cannot directly correlate to having had climate change based effects, as we can neither support or refute its evidence in our reservoirs as changes relating to climate do not only impact physical parameters but also animal and plant communities, and social factors such as use (influenced by cyanobacteria blooms). It is even plausible that increased in reservoir production and turbidity could lead to shifts in physical trends that would otherwise be different in non-affected reservoirs. Over all more information is needed to create a better picture of exactly how climate change is impacting the physical mixing parameters in Missouri reservoirs as they are complex and varied systems.Cody Kimbell, John R. Jones, Daniel Obrecht, and Rebecca North (University of Missouri, Columbia
UC-62 Machine Learning: Twitter Bots in Disguise
This project was designed to help fight against misinformation spread by bots(computers), the goal assigned to us was to find and inform Twitter users of bots that follow and are being followed by the user.Advisors(s): Dr. Reza PariziTopic(s): Artificial IntelligenceSWE 472
Time-Dependent Inhibition and Estimation of CYP3A Clinical Pharmacokinetic Drug-Drug Interactions Using Plated Human Cell Systems
ABSTRACT: The current studies assessed the utility of freshly plated hepatocytes, cryopreserved plated hepatocytes, and cryopreserved plated HepaRG cells for the estimation of inactivation parameters k inact and K I for CYP3A. This was achieved using a subset of CYP3A time-dependent inhibitors (fluoxetine, verapamil, clarithromycin, troleandomycin, and mibefradil) representing a range of potencies
Cuticular hydrocarbons for identifying Sarcophagidae (Diptera)
The composition and quantity of insect cuticular hydrocarbons (CHCs) can be species-specific as well as sexually dimorphic within species. CHC analysis has been previously used for identification and ageing purposes for several insect orders including true flies (Diptera). Here, we analysed the CHC chemical profiles of adult males and females of eleven species of flesh flies belonging to the genus Sarcophaga Meigen (Sarcophagidae), namely Sarcophaga africa (Wiedemann), S. agnata Rondani, S. argyrostoma Robineau-Desvoidy, S. carnaria (Linnaeus), S. crassipalpis Macquart, S. melanura Meigen, S. pumila Meigen, S. teretirostris Pandellé, S. subvicina Rohdendorf, S. vagans Meigen and S. variegata (Scopoli). Cuticular hydrocarbons extracted from pinned specimens from the collections of the Natural History Museum, London using a customised extraction technique were analysed using Gas Chromatography–Mass Spectrometry. Time of preservation prior to extraction ranged between a few weeks to over one hundred years. CHC profiles (1) allowed reliable identification of a large majority of specimens, (2) differed between males and females of the same species, (3) reliably associated males and females of the same species, provided sufficient replicates (up to 10) of each sex were analysed, and (4) identified specimens preserved for up to over one hundred years prior to extraction
Recommended from our members
Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).
Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications
Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium
The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs), we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus, modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases
SSAGES : Software Suite for Advanced General Ensemble Simulations
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public
- …