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Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper
results and making reliable conclusions from simulations requires adequate sampling of the sys-
tem under consideration. To this end, a variety of methods exist in the literature that can enhance
sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed
at a rapid pace. Implementation of these techniques, however, can be challenging for experts and
non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access
to a wide range of advanced sampling methods and that facilitates implementation of new tech-
niques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced
General Ensemble Simulations designed to interface with multiple widely used molecular dynam-
ics simulations packages. SSAGES allows facile application of a variety of enhanced sampling
techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract
meaningful free energy and transition path data from all-atom and coarse-grained simulations. A
noteworthy feature of SSAGES is a user-friendly framework that facilitates further development
and implementation of new methods and collective variables. In this work, the use of SSAGES
is illustrated in the context of simple representative applications involving distinct methods and
different collective variables that are available in the current release of the suite. The code may
be found at: https://github.com/MICCoM/SSAGES-public. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5008853

INTRODUCTION

The past several decades have seen molecular simulations
emerge as an essential tool for molecular research.1 Through
the formalism provided by statistical mechanics, molecular
simulations are able to relate phenomena at small length scales
to experimental observables such as temperature, pressure, and
other thermodynamic quantities. The validity of such calcula-
tions relies on proper sampling of the system under consid-
eration, which is often achieved by running a simulation over
a sufficiently long period of time. For many systems of inter-
est, however, the time necessary to explore the phase space is
prohibitively long, and one must resort to advanced sampling
techniques.

Conventional molecular dynamics (MD) or Monte Carlo
(MC) simulations generally encounter severe limitations in

a)H. Sidky and Y. J. Colón contributed equally to this work.

systems that exhibit rugged energy landscapes, which are
characterized by multiple metastable states that are separated
by large energy barriers. Examples include proteins,2–8 small
molecules in viscous solvents or membranes,9–14 and phase
transitions,15–20 to name a few of the classes of simulation sce-
narios that one may encounter in a variety of disciplines.21,22

Enhanced sampling techniques seek to eliminate or circumvent
such barriers, thereby providing a means to recover thermody-
namic quantities for systems that would be difficult to study
through a direct MD approach.

A second limitation of traditional MD or MC simula-
tions is that they only provide direct access to structure and
“mechanical” properties such as the temperature or pres-
sure. Thermodynamic quantities such as the entropy or the
free energy can only be determined by relying on external
methods that involve integrals of mechanical quantities over
specific thermodynamic variables and pathways. The essence
of an enhanced sampling method is to introduce an exter-
nal bias, usually in the form of an external potential or an
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external force, which promotes the exploration of an activated
process, described with a set of collective variables (CVs).
Such collective variables are functions of the atomic coor-
dinates of the system. Given a set of CVs and an enhanced
sampling method, one can usually recover thermodynamic
and kinetic quantities in the space that the CVs define, such
as the free energy, entropy, or reaction rates. As explained
in what follows, advanced biasing techniques and CVs pro-
vide information relating to the entropy or free energy as a
byproduct of the simulation, thereby providing a strong incen-
tive to implement such methods in order to fully exploit a
simulation.

A variety of techniques have been developed to address
these challenges. Examples include configurational bias sam-
pling,23–25 parallel tempering or replica exchange,21,22,26–28

umbrella sampling,29 Wang-Landau or density-of-states sam-
pling, expanded ensemble methods,30 chain-of-states meth-
ods,31–33 adaptive biasing force (ABF),34 metadynamics
(MTD),35–37 basis function sampling (BFS),38,39 and oth-
ers.40–45 Similarly, typical CVs on which such techniques may
be used include separation distance, dihedral angles, and coor-
dination number.46 Implementing these methods and CVs can
be challenging and requires access to quantities defined in the
MD software that are usually inaccessible to common users,
e.g., Cartesian coordinates, momenta, forces, or energies. As
a result, a majority of simulations to date have relied on stan-
dard, unbiased molecular dynamics simulations or have used
the simplest (and easiest to implement) biasing techniques and
CVs. Recent efforts have sought to remedy this situation by
providing generalized, open-source software that can interface
with multiple molecular dynamics engines and bias a trajec-
tory through the use of various enhanced sampling methods
and CVs. Examples include plug-ins such as PLUMED,47,48

PyRETIS,49 open path sampling,50 and various collective vari-
ables modules.46,51 While collectively these codes offer a wide
variety of sampling algorithms, individual codes generally
implement a few select methods. Path sampling and adap-
tive bias methods, for example, are offered separately. There
is a need for a unified framework that allows for a seamless
transition between types of methods and techniques, thereby
enabling comparison between them. This capability will in turn
allow users to make informed decisions about what sampling
approach is most effective for a particular system of interest
and facilitate both free energy and path sampling calculations.

In this work, we present SSAGES, a Software Suite for
Advanced General Ensemble Simulations. SSAGES is a free,
open-source software package written in C++ that allows
users to easily apply enhanced sampling techniques to any
molecular system of interest. SSAGES currently interfaces
with LAMMPS,52 GROMACS,53,54 OpenMD,55 Qbox,56 and
DASH.57 SSAGES includes enhanced sampling techniques
such as: umbrella sampling, steered MD, metadynamics, for-
ward flux sampling (FFS), nudged elastic band (NEB), finite
temperature string (FTS), swarms of trajectories (SoT), adap-
tive biasing force, basis function sampling, and artificial neural
network (ANN) sampling. The collective variables available
in SSAGES include: angle, dihedral, distance between centers
of mass, Rouse modes, secondary structure, box volume, gyra-
tion tensor, and coordination number. Importantly, SSAGES
has been created in a highly modular manner, allowing for
easy implementation of new methods and collective variables
or modification of existing ones. Herein we describe the over-
all structure of the code, as well as the methods that have been
implemented and tested within the package. We also provide
guidelines to implement new methods and collective variables
using the SSAGES framework.

DESCRIPTION OF THE CODE

Figure 1 summarizes the workflow used in SSAGES to
perform an enhanced sampling calculation. Input files are
defined using the JSON (JavaScript Object Notation) syntax,
which is a lightweight human and machine-readable file format
with native support across many programming and scripting
languages. This facilitates easy scripting and automated work-
flows without the burden of implementing custom parsers by
the end user. Communication between SSAGES and the engine
takes place through a lightweight adapter, termed “hook,”
which bridges engine-agnostic methods and CVs implemented
within SSAGES and the integration of the equations of motion
by the underlying MD engine.

Once a simulation is initialized by the MD engine of
choice, the relevant atomic coordinates, forces and momenta,
the box virial tensor, and other thermodynamic quantities are
copied by the hook into a SSAGES “snapshot” object, which
is then exposed to the SSAGES framework. The collective
variables of interest are calculated, and then a user specified
method makes the necessary changes to the snapshot based

FIG. 1. Flowchart of running a simulation using
SSAGES. A JSON input file defines collective variables
and sampling methods to be used. SSAGES then starts
the simulation with a given engine and updates quantities
according to the method until convergence or a prescribed
number of iterations are met.
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on the state of the system and the collective variables. Other
modules declared by the user that “observe” the simulation are
also invoked. These may include logging or histogram modules
to aid the user in post-processing or collect additional useful
information. The final modified snapshot is then used by the
hook to update the appropriate data within the engine, after
which a simulation step is completed. This iterative process is
repeated until a predefined number of steps are executed or a
method converges.

As described above and illustrated in Fig. 1, SSAGES
routines are engine-agnostic. The only engine-specific code
that needs to be written is the hook, which must integrate
into engine components that expose the necessary data struc-
tures. Strict compartmentalization ensures that the only objects
and functions exposed to the remainder of the SSAGES code
are independent of engine implementation. This setup allows
for new methods to be developed using a single unified pro-
gramming interface, fully decoupled from the intricacies of
any particular engine. Furthermore, exposing all the methods
available within SSAGES to a new engine simply requires
the development of a single additional hook. This is partic-
ularly useful for users who may want to rely on their own
engines. The open source nature of this project welcomes
such public contributions to the base code, which we envi-
sion will rapidly accelerate the utilization of enhanced sam-
pling techniques in the field. This construct also simplifies the
task of maintaining support with new releases of the exist-
ing MD codes since any changes are reflected only within the
hook.

Another important aspect of SSAGES is the straightfor-
ward implementation of new methods and collective variables
(Fig. 2). The addition of a new method requires that a new class,
which derives from the base “Method” class, be programmed.
There are four functions that every method must implement:
“PreSimulation,” which is invoked after the construction of
the simulation engine but before integration begins, “PostIn-
tegration,” the primary function call that is invoked every step

FIG. 2. Required functions for a method (left) and a collective variable (right).
The pre-simulation section is used to initialize internal variables, and the post-
simulation section is used for post-processing and to close any files that may
have been used during the simulation. The post-integration section is where
the heart of the method is located. This section is called after every step
and is responsible for the method calculations. Both methods and CVs are
constructed from JSON objects in the build call.

after forces are calculated by the engine—but before atomic
coordinates are updated, “PostSimulation,” invoked after all
steps have been completed prior to the shutdown of the engine,
and “Build,” which constructs a new method object from a
parsed JSON input. The first three functions are provided with
a pointer to a snapshot that may be manipulated and a refer-
ence to a CV manager that provides access to initialized CVs
with selection rules.

Although there are no strict requirements for what is con-
tained within each of the aforementioned functions, it is cus-
tomary that output file setup, memory allocation, and method-
specific data structures be initialized during pre-simulation.
The biasing or other system manipulation occurs during post-
integration. This typically involves the addition of force to
atoms based on CVs or the direct manipulation of atomic coor-
dinates and summing the virial tensor contribution for constant
pressure simulations. For methods that require additional post-
processing, this task is usually reserved for the PostSimulation
function.

Since different methods often rely on similar building
blocks, SSAGES provides convenient access to implemen-
tations of various reusable components. For example, many
methods either directly depend upon or are accelerated by
grids that discretize CV space. SSAGES offers two efficient
grid implementations that are templated to support arbitrary
data types. One is tailored for use as a histogram, offering
overflow bins, and the other is more general and better suited
for storing forces. Both automatically handle periodic coordi-
nates, support multidimensional interpolation, provide custom
iterators, and include functions for saving/loading the grids
to/from disk. Another example is related to the wide range
of published string methods, which rely on slightly differ-
ing algorithms; a base string method class is available that
implements a large portion of the necessary inter-process com-
munication, greatly simplifying the implementation of other
string techniques. Similarly, a reference forward flux sampling
implementation is available that can be extended to support
different “flavors” of forward flux sampling.

Like any method, a CV must derive from a base class
and implement required functions. Because CVs are simply
functions of system configurations, they are unable to manipu-
late snapshots and are given read-only access. Doing so limits
the responsibility of a CV and in turn reduces the possibil-
ity of introducing undesirable errors. The “Initialize” function
(Fig. 2) is used by a CV to ensure that all the participating
atoms are available at runtime—this is the final part of a multi-
tiered input validation process described later on. “Evaluate”
is responsible for calculating the CV in addition to its gradi-
ent with respect to the 3N atomic Cartesian coordinates and 6
box degrees of freedom. For some CVs, calculating the latter
term may be difficult and is only necessary if proper treatment
in the isobaric ensemble is desired. The calculated CV value
and gradient are passed on to the methods which may propa-
gate forces along the CVs to the atoms using the chain rule. A
CV may also optionally override a “GetDifference” function
which allows a method to properly measure distances along
periodic CVs.

An important consideration for the development of both
methods and CVs is the parallel nature of modern molecular
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dynamics codes. To support the large-scale simulation of thou-
sands or millions of atoms, many engines rely on distributed
computing strategies spanning multiple processors through
domain and force decomposition. The necessary inter-process
communication is often implemented using the Message Pass-
ing Interface (MPI) programming interface, which SSAGES
handles seamlessly. Multi-threading using graphics process-
ing units (GPUs) or OpenMP do not affect the availability of
atomic information and do not alter the operation of SSAGES.
In situations involving multiple processors, whether for a sin-
gle system or multi-walker simulation, which SSAGES sup-
ports, global and intra-walker communicators are provided to
methods and CVs. An additional MPI wrapper is also avail-
able which greatly simplifies inter-process communication.
To minimize the need for the tedious MPI calls that are nec-
essary to gather information distributed across multiple pro-
cessors, the snapshot provides helper functions which map
global atomic indices to local processor-specific IDs, gather
the center of mass of an atom group across the necessary
processors, and collect all atomic coordinates into a single
array.

Performance is of utmost importance when performing
advanced sampling simulations. Some amount of overhead
is unavoidable, even with the most basic methods, simply
due to the additional calculations that must be performed at
every step. Additionally, elaborate CVs may involve com-
putationally expensive gradients or require significant inter-
process communication. While an arbitrary implementation of
a method or CV is not guaranteed to be efficient, SSAGES was
designed in such a way so as to minimize the fixed overhead
and offer tools to accelerate calculations. The SSAGES hook
and synchronization mechanism is very lightweight and does
not rely on complex polymorphism or abstractions, thereby
resulting in a measured overhead of 1%-2% across all tested
engines. Thus, pairing a simple method and CV will not intro-
duce a significant slowdown compared to an unbiased simu-
lation. Furthermore, numerical arrays are built upon Eigen, a
C++ numerical library, which provides linear algebra opera-
tions in a natural syntax and takes advantage of single instruc-
tion multiple data (SIMD) extensions on modern processors,
leading to a substantial speedup over serial loops.58 CV and
method developers are encouraged to take advantage of SIMD
parallelism when developing new classes.

To initialize a method or CV at runtime requires parsing
of a JSON input file. SSAGES adopts a multi-tiered approach
to validate the input. The integrated JSON parser is responsi-
ble for validating the overall structure and syntax of the input
file. Gross syntax errors such as unclosed braces or untermi-
nated quotes are caught immediately, and the user is informed.
Basic data validation is provided for CVs and methods using
the JSON schema draft 4 specification. This entails the speci-
fication of a JSON schema file which contains a “blueprint” or
set of expectations by the developer for their object. Validation
at this level includes data types, upper and lower bounds, string
regular expression matching, required and optional fields, and
enumerations. Once the schema is validated against the input
file by the SSAGES engine, a C++ object containing the data
is provided to the appropriate build function where a devel-
oper can perform semantic validation using advanced logic.

FIG. 3. JSON input file for performing umbrella sampling on two distance
CVs.

However, the use of a schema greatly simplifies developers’
efforts since they will have necessarily received the appropri-
ate data and types. The object can be initialized using these
data, and the final runtime validation, such as checks for the
presence of atoms, can be performed at the pre-simulation
stage.

Figure 3 shows a JSON input file to use a method
(umbrella sampling) and a CV (distance between centers of
mass). The input file specifies two distance CVs to be cal-
culated. The first is the distance between the center of mass
of particle 1 and 2 and the center of mass of particle 3 and
4. The second is the same but with particles 5 and 6 and
particles 7 and 8. Then the input file identifies the method:
umbrella sampling. It specifies that the method will oper-
ate on both CVs. The first will have a spring constant of
100 and a center of 0.5 while the second will have a spring
constant of 200 and a center of 2. The units of these quan-
tities will be consistent with the internal units of the engine
of choice. Further instructions on how to implement new
methods and CVs can be found in the documentation of the
software.

OVERVIEW OF METHODS

In what follows, we only provide a brief description of
the methods that are currently included in SSAGES. For more
detailed explanations of the techniques, we refer the reader to
the references contained within this section. We also note that
the list of methods available in SSAGES continues to grow, and
users interested in the latest release are referred to the code’s
website (https://github.com/MICCoM/SSAGES-public).

A wide range of techniques have been developed to
improve sampling efficiency and allow the extraction of quan-
tities of interest: free energies, transition pathways, and/or
rates. One technique implemented in SSAGES is umbrella
sampling. It helps to overcome energetic barriers and improve

https://github.com/MICCoM/SSAGES-public


044104-5 Sidky et al. J. Chem. Phys. 148, 044104 (2018)

sampling by applying a bias along a specified collective
variable.59 The bias often takes the form of a harmonic poten-
tial and is typically constant throughout a simulation. Usu-
ally, a series of umbrella-sampled simulations are performed
and analyzed together using the weighted histogram analysis
method (WHAM)60,61 or umbrella integration.62 In SSAGES,
the target value of umbrella sampling can be made time-
dependent, which is equivalent to the steered molecular
dynamics method.63–66

To calculate free energies, SSAGES makes use of flat-
histogram or density-of-states methods. These are powerful
methods that calculate free energies by developing uniform
distributions along expanded ensemble partition functions.
More details on these methods can be found in a recent review
by Singh, Chopra, and de Pablo.30 Of the flat-histogram meth-
ods, SSAGES currently includes metadynamics,67 basis func-
tion sampling (BFS),38 and the recently proposed artificial neu-
ral network (ANN) sampling.68 The main difference between
these methods is how the bias is applied to achieve a uni-
form distribution. Within metadynamics, a history-dependent
bias is accrued through the sequential addition of Gaussian
biases to the collective variables (CVs) of interest, which acts
to push the system away from previously visited states. As the
bias accrues to the height of nearby features in the free energy
surface (FES), the system’s trajectory can escape a local free
energy minimum and begin to explore other regions of CV
space. After a sufficient number of biases have been applied,
the total applied bias within a given region begins to oscil-
late around the negative of the free energy in that region.
There are many variants of metadynamics: well-tempered,
flux-tempered, transition-tempered, and adaptive Gaussians.
Currently, SSAGES includes only standard metadynamics
with fixed-shape hills.

Instead of dropping Gaussians, basis function sampling
(BFS) relies on the summation of Kronecker deltas to bias
a simulation. The Kronecker delta is approximated by the
projection of a locally biased histogram to a truncated set of
orthogonal basis functions. By projecting a basis set relative
to a weight function, the method resolves the same properties
as the Kronecker deltas but in a continuous and differentiable
manner that lends itself to MD simulations. SSAGES currently
constructs the basis set using Legendre and Chebyshev polyno-
mials and Fourier series. Convergence of the method is based
on the updates of the basis set coefficients. ANN sampling
uses Bayesian-regularized neural networks to develop an ideal
bias that is free from ringing and boundary artifacts associ-
ated with basis functions and metadynamics.68 It is capable of
rapidly conforming to varied free energy landscapes by inter-
polating undersampled regions and extrapolating bias into new
unexplored areas.

A variant of the flat-histogram methods is adaptive biasing
force, or ABF, which also seeks to sample uniformly over CV
space. Unlike other methods, however, ABF does not obtain a
direct estimate of the free energy surface but rather the deriva-
tive of the free energy in the CV direction: the generalized
force on that CV by the system. In practice, this translates to
binning coordinates in CV space with an instantaneous estima-
tion of the force. This instantaneous estimate fluctuates around
the true, global free energy derivative at that point, but the

average quickly converges to the real value. Then, the free
energy derivatives can be integrated to determine the free
energy surface. More detailed explanations of the method
can be found in Refs. 69 and 70. SSAGES follows the
implementation of Darve and co-workers.69

In addition to free energy methods, SSAGES provides
methods to identify transition pathways between metastable
states. These chain-of-states methods discretize a proposed
pathway that connects two states into images or nodes. As sam-
pling proceeds, the pathway is iteratively evolved by adjust-
ing the position of these nodes. There are many variants,
and SSAGES currently includes three: nudged elastic band
(NEB), finite temperature string (FTS), and swarm of trajec-
tories (SoT). The NEB method involves the evolution of a
series of images connected by a spring interaction (hence the
“elastic” nature of the band).71–73 The “nudged” nature refers
to a force projection that ensures the images do not all fall
into the metastable states as they evolve. This projection is
accomplished by using the parallel portion of the spring force
and the perpendicular portion of the true force. In this way,
the spring forces act similarly to reparameterization schemes
common to string methods. When the images are in Cartesian
space, NEB converges to the minimum energy path (MEP).
When they are in CV space, which requires the introduction
of an M-tensor, NEB converges to the minimum free energy
path (MFEP). FTS converges to the principal curve, which
intersects each of the perpendicular hyperplanes that it passes
through at the expected value of each hyperplane. Instead of
sampling along each hyperplane belonging to each node along
the string, SSAGES employs the Voronoi approximation intro-
duced by Vanden-Eijnden and Venturoli.74 Each image is free
to explore CV space within its own Voronoi cell: the region in
CV space where any point is closer to its node than any other
node along the string. The string is then evolved toward the
running averages in CV space for each image along the string.
When the string is updated, the nodes are redistributed such
that they are an equal arc length apart and a cubic spline is
used to ensure that the curve is smooth. Finally, SoT launches
a large number (a swarm) of unrestrained trajectories from
each image on the string and estimates the average drift of
the collective variables over the swarm. The images along the
string are then evolved along the average drift. As a result, SoT
yields the most probable transition pathway (MPTP). Similar
to FTS, the string is reparameterized such that the nodes along
the string are an equal arc length apart. Additional details on
SoT may be found in the literature.75

Lastly, another type of transition pathway method avail-
able in SSAGES is forward flux sampling (FFS). FFS produces
as output the rate and the trajectories for a system that goes
from an initial state A to a final state B. This is done by choos-
ing several intermediate states or interfaces between the states
such that the energy barriers between adjacent interfaces are
readily surmountable in a typical simulation. Using configura-
tions at each interface, attempts are made to arrive at the next
interface in the forward direction. A large number of trajec-
tories are launched at each interface, and successful trials are
stored and used as checkpoints in the next interface. From suc-
cessful and failed trials, conditional probabilities of interface
crossing may be calculated and hence the transition rate from
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TABLE I. Summary of methods available in SSAGES and other open-source software.

Method Software

Replica exchange PLUMED, Colvars, GROMACS, LAMMPS
Umbrella sampling SSAGES, PLUMED, Colvars
Steered MD SSAGES, PLUMED, Colvars
Metadynamics SSAGES, PLUMED, Colvars
Well-tempered metadynamics SSAGES, PLUMED, Colvars
Basis function sampling SSAGES
Adaptive biasing force SSAGES, PLUMED, Colvars
Artificial neural network sampling SSAGES
Nudged elastic band SSAGES
Finite temperature string SSAGES
Swarm of trajectories SSAGES
Forward flux sampling SSAGES, PyRETIS
Transition path sampling Open path sampling

state A to state B. Different flavors of the forward flux method
use their unique protocol to select checkpoints to initiate
trials at a given interface, compute final probabilities, cre-
ate transitions paths, and analyze additional statistics.76–78

SSAGES currently implements direct forward flux sampling
(DFFS).

Table I summarizes the available methods in SSAGES
and, if applicable, other software packages.

OVERVIEW OF COLLECTIVE VARIABLES

Collective variables (CVs) are functions of the atomic
coordinates in a molecular simulation. Table II shows the
CVs included in SSAGES along with a short description.
We have implemented several CVs highlighted by Fiorin and
co-workers46 and added others relevant to multiple research
endeavors. Although SSAGES currently does not include as
many collective variables as other sampling packages (e.g.,

PLUMED and Colvars), it still includes the most commonly
used CVs46 and provides the capability to utilize these CVs
with the range of methods in Table I. Importantly, as described
above, the implementation of new CVs is straightforward, and
the project invites user contributions that will help expand the
list of options.

REPRESENTATIVE EXAMPLES: METHODS

To highlight the current capabilities of SSAGES, sev-
eral representative examples are provided in what follows. A
feature of SSAGES is the ability to easily change between
methods to study the same system. We compare the results
obtained using ABF, BFS, metadynamics (MTD), and ANN
sampling for the dissociation of NaCl in explicit water. NaCl
was modeled using parameters reported in the literature84,85

and extended simple point charge (SPC/E)86 water model was
used. An NaCl pair along with 1498 water molecules was

TABLE II. Collective variables available in SSAGES.

Collective variable Description

Angle Angle between three particles.
Box volume Volume of simulation box.
Gyration tensor Components of gyration tensor. The user can specify what component of the tensor to calculate:

principal moment, radius of gyration, asphericity, acylindricity, or shape anisotropy.
Pairwise Calculate pairwise distances between two groups of particles. The distances are

then passed to a Gaussian or switching function. The resulting quantities can be used to
distinguish between clusters79 or calculate coordination number.80

Particle coordinate Cartesian coordinates of a group of particles (x, y, or z).
Particle position Distance of a group of particles from a specified Cartesian coordinate (x, y, or z).
Particle separation Distance between centers of mass of two groups of particles.
Rouse mode Rouse mode of a polymer chain.
Alpha helix Calculate alpha-helix character over a range of residues as the number of six-residue

segments which match an ideal alpha-helical configuration.81

Parallel beta-sheet Calculate parallel beta-sheet character over a range of residues as the
number of six-residue segments which match an ideal parallel beta-sheet configuration.81

Anti-parallel Calculate anti-parallel beta-sheet character over a range of
beta-sheet residues as the number of six-residue segments which match an ideal

anti-parallel beta-sheet configuration.81

Torsional Proper dihedral between four atoms.82,83
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FIG. 4. Free energy profile for NaCl dissociation in water using ABF, BFS,
MTD, and ANN sampling. All three methods produce very comparable results,
which serves as a means to validate the methods within SSAGES.

simulated at a constant temperature and pressure of 298.15 K
and 1.0 bar using the stochastic velocity rescale thermostat and
Parrinello-Rahman barostat, respectively. Electrostatic inter-
actions were calculated using particle-mesh Ewald method
with a 10�4 accuracy. The simulations were run for 30 ns
with a 2 fs time step using GROMACS 2016.3. Hydrogen
bonds were held fixed using the LINCS algorithm.87 Method-
specific parameters were chosen optimally to achieve rapid
convergence.

As can be seen from Fig. 4, all three methods yield very
similar free energy estimates. Metadynamics, in particular, dis-
plays oscillations not present in the other methods. This is a
known shortcoming of non-tempered metadynamics and need
not be discussed here. The summed hills were averaged once a
level bias began accruing with a stride of 100. Longer simula-
tion times are certain to yield a smoother curve. However, the

main point that we wish to emphasize is that having access to
software that offers distinct methods for sampling and calcu-
lation of free energies allows one to compare the performance
of different algorithms for a specific application and identify
an optimal choice.

Similarly, we calculate the free energy surface (FES) for
the conformational energies of alanine dipeptide (ADP) in vac-
uum and compare the results of ABF, BFS, metadynamics, and
ANN sampling (Fig. 5). As with NaCl, we used GROMACS
for the simulations. ADP was modeled using the Amber99sb
forcefield88 and hydrogen bonds were held fixed using the
LINCS algorithm.87 Simulations were run in the NVT ensem-
ble at 298.15 K using the stochastic velocity rescale thermostat.
Electrostatic interactions were calculated using particle-mesh
Ewald method with a 10�4 accuracy. The simulations were
run for 100 ns with a 2 fs time step using GROMACS 2016.3.
The free energy surfaces were calculated using two torsional
angles along the backbone as collective variables. We find the
three configurations with the lowest free energy at approx-
imately (�2.5, 2.7), (�1.4, 1.1), and (1, �1.1). These struc-
tures have also been found and reported previously in the
literature.47,67

Next, we present a comparison of the nudged elas-
tic band and the string methods implemented in SSAGES.
As previously discussed, three methods are available: the
nudged elastic band method, the finite temperature string
method, and the string method with swarms of trajecto-
ries. In Fig. 6, an initial chain of 22 images is overlaid
on a free energy surface for the alanine dipeptide config-
urations, obtained via ABF. The three converged pathways
obtained from the three chain-of-states methods using this
initial chain are also plotted over the surface in Fig. 6. All
simulations, including ABF, were performed using LAMMPS
with the same force field without holding hydrogen bonds
rigid.

FIG. 5. Free energy surface of ADP configurations in
vacuum calculated with ABF (a), BFS (b), Metadynamics
(c), and ANN sampling (d). All methods find the same
minima and identify the same barriers, though the explicit
height and shape of high free energy barriers varies.
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FIG. 6. Free energy landscape with chain-of-states results for ADP calcu-
lated using nudged elastic band (diamonds), finite temperature string (circles),
and swarm of trajectories (stars). The contour map was obtained using ABF.
We observe excellent agreement between nudged elastic band and the string
methods, as well as with ABF.

The estimated location of the transition barrier is in excel-
lent agreement across all three methods, as well as the location
of the two minima. However, the three paths differ slightly
from one another outside the vicinity of the transition barrier
and the two minima. This is likely a manifestation of several
effects, including the fact that each of these three methods
theoretically converges to a different type of pathway: NEB
to the minimum free energy pathway (MFEP), FTS to the
principal curve, and SoT to the most probable transition path-
way (MPTP). Additionally, as discussed above, the metric
tensor is assumed here to be identity for NEB and FTS for
computational efficiency, which is not necessarily always the
case.

REPRESENTATIVE EXAMPLES: COLLECTIVE
VARIABLE

We next illustrate the application of SSAGES with a new
CV. We consider the free energy profile for the Rouse modes of
a polymer chain, which can describe both the internal structure
and dynamics of various polymer systems.89,90 For a polymer
comprised of N segments, the Rouse mode coordinates are
computed as follows:

Xp =

√
cp

2

∑N−1

i=0
Ri cos

[
pπ
N

(
i +

1
2

)]
, (1)

where p = 0, . . ., N � 1 indicates the mode index, Ri is the
position of the ith segment in the polymer chain, and cp is a
constant equal to 1 for p = 0 and equal to 2 for all other modes.
In Eq. (1), the zeroth mode roughly maps to the polymer’s
center of mass, and the remaining modes can be thought as
collective variables corresponding to sub-chains of (N � 1)/p
segments. For example, the relaxation at long times of the end-
to-end vector R = RN�1 � R0 corresponds to the relaxation of
X1.91

Here, we compute the free energy profile along
X1 =

√
X1 · X1 of an ideal, Gaussian chain with SSAGES

using both umbrella sampling and ABF, with unbiased, brute-
force molecular dynamics and with the exact result given by

FIG. 7. Free energy profiles along the first Rouse mode amplitude X1, using
reduced units, for an ideal Gaussian chain obtained from unbiased, brute-
force MD simulation (black line with gray error region), the ABF method
in SSAGES (red circles), the umbrella sampling method in SSAGES (blue
diamonds), and Eq. (2) (orange line). Insets are three representative config-
urations of the Gaussian chain for X1 ≈ 1.0, 5.0, and 15.0 from left to right.
Error bars and/or error regions represent the standard error of the mean.

F
(
Xp

)
= −kBT


2 ln Xp −

6 sin2 pπ
2N

πb2
X2

p

+ ln *
,
24

√
6
π

sin3 pπ
2N

b3
+
-


, (2)

where b2 is the mean-squared bond length between adja-
cent segments of the polymer chain. Figure 7 compares the
results of the different methods for F(X1) using reduced units
with b = 1 and kBT = 2/3. All MD simulations employed
the LAMMPS simulation engine. The figure shows that both
umbrella sampling and ABF as implemented in SSAGES capa-
bly reconstruct the correct free energy profile. For this toy
example, brute-force, unbiased MD also generates the correct
free energy profile via Boltzmann inversion, albeit over a more
limited range (there is no sampling for X1 > 16.50) and with
additional statistical error. Although the results for this sys-
tem are trivially obtained, this first application, accelerated by
the SSAGES framework, demonstrates an intriguing strategy
to use specific Rouse modes as biasing for more novel future
applications.

The umbrella sampling results were obtained using 21
simulation windows with harmonic biasing potentials given

by 1
2 k

(
X1 − X (l)

1

)2
, with k = 1.0 and X (l)

1 = l, for l = 0.0, . . .,

20.0. Each simulation ran for 2.1× 106 time steps with X1 sam-
pled every 50 time steps after the first 105 time steps used as
equilibration; the free energy profile was reconstructed using
WHAM. The ABF results were obtained using four indepen-
dent simulations, and each simulation ran for 4 × 106 time
steps. The unbiased, brute-force MD results were obtained
from a single simulation of 4.1 × 106 time steps.

OUTLOOK

We present an open-source, free, and modular software for
the general use of enhanced sampling techniques: SSAGES
(Software Suite for Advanced General Ensemble Simula-
tions). The software currently interfaces with LAMMPS,
GROMACS, OpenMD, QBox, and DASH and includes the
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following methods: umbrella sampling, metadynamics, for-
ward flux sampling, nudged elastic band, finite temperature
string, swarms of trajectories, adaptive biasing force, artifi-
cial neural network sampling, and basis function sampling.
We demonstrate SSAGES’ versatility by comparing various
systems across different methods and collective variables and
showing their agreement. Further, SSAGES provides a flex-
ible framework for the modification and implementation of
new methods and CVs. We believe that SSAGES will be used
and developed by the scientific community, promoting the
development and exchange of new methods and CVs. The
code is open-source and can be downloaded from GitHub at
https://github.com/MICCoM/SSAGES-public.
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C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26,
1781–1802 (2005).

52S. Plimpton, J. Comput. Phys. 117, 1–19 (1995).
53H. J. C. Berendsen, D. Vanderspoel, and R. Vandrunen, Comput. Phys.

Commun. 91, 43–56 (1995).
54B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory

Comput. 4, 435–447 (2008).
55J. Gezelter, S. Kuang, J. Marr, K. Stocker, C. Li, C. Vardeman, T. Lin,

C. Fennell, X. Sun, and K. Daily, OPENMD, an open source engine for
molecular dynamics, available at http://openmd.net.

56F. Gygi, IBM J. Res. Dev. 52, 137–144 (2008).
57D. R. Reid and J. J. de Pablo (2017). Zenodo. https://doi.org/10.5281/

zenodo.886545
58G. Guennebaud and B. Jacob, Eigen v3, 2010, http://eigen.tuxfamily.org.
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