208 research outputs found
Recommended from our members
An effective frame breaking policy for dynamic framed slotted aloha in RFID
The tag collision problem is considered as one of the critical issues in RFID system. To further improve the identification efficiency of an UHF RFID system, a frame breaking policy is proposed with dynamic framed slotted aloha algorithm. Specifically, the reader makes effective use of idle, successful, and collision statistics during the early observation phase to recursively determine the optimal frame size. Then the collided tags in each slot will be resolved by individual frames. Simulation results show that the proposed algorithm achieves a better identification performance compared with the existing Aloha-based algorithms
Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification
Despite the fact that nonlinear subspace learning techniques (e.g. manifold
learning) have successfully applied to data representation, there is still room
for improvement in explainability (explicit mapping), generalization
(out-of-samples), and cost-effectiveness (linearization). To this end, a novel
linearized subspace learning technique is developed in a joint and progressive
way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning
str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label
classification. The J-Play learns high-level and semantically meaningful
feature representation from high-dimensional data by 1) jointly performing
multiple subspace learning and classification to find a latent subspace where
samples are expected to be better classified; 2) progressively learning
multi-coupled projections to linearly approach the optimal mapping bridging the
original space with the most discriminative subspace; 3) locally embedding
manifold structure in each learnable latent subspace. Extensive experiments are
performed to demonstrate the superiority and effectiveness of the proposed
method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201
SULoRA: Subspace Unmixing with Low-Rank Attribute Embedding for Hyperspectral Data Analysis
To support high-level analysis of spaceborne imaging spectroscopy (hyperspectral) imagery, spectral unmixing has been gaining significance in recent years. However, from the inevitable spectral variability, caused by illumination and topography change, atmospheric effects and so on, makes it difficult to accurately estimate abundance maps in spectral unmixing. Classical unmixing methods, e.g. linear mixing model (LMM), extended linear mixing model (ELMM), fail to robustly handle this issue, particularly facing complex spectral variability. To this end, we propose a subspace-based unmixing model using low-rank learning strategy, called subspace unmixing with low-rank attribute embedding (SULoRA), robustly against spectral variability in inverse problems of hyperspectral unmixing. Unlike those previous approaches that unmix the spectral signatures directly in original space, SULoRA is a general subspace unmixing framework that jointly estimates subspace projections and abundance maps in order to find a ‘raw’ subspace which is more suitable for carrying out the unmixing procedure. More importantly, we model such ‘raw’ subspace with low-rank attribute embedding. By projecting the original data into a low-rank subspace, SULoRA can effectively address various spectral variabilities in spectral unmixing. Furthermore, we adopt an alternating direction method of multipliers (ADMM) based to solve the resulting optimization problem. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods
Fourier-based Rotation-invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection
Geospatial object detection of remote sensing imagery has been attracting an
increasing interest in recent years, due to the rapid development in spaceborne
imaging. Most of previously proposed object detectors are very sensitive to
object deformations, such as scaling and rotation. To this end, we propose a
novel and efficient framework for geospatial object detection in this letter,
called Fourier-based rotation-invariant feature boosting (FRIFB). A
Fourier-based rotation-invariant feature is first generated in polar
coordinate. Then, the extracted features can be further structurally refined
using aggregate channel features. This leads to a faster feature computation
and more robust feature representation, which is good fitting for the coming
boosting learning. Finally, in the test phase, we achieve a fast pyramid
feature extraction by estimating a scale factor instead of directly collecting
all features from image pyramid. Extensive experiments are conducted on two
subsets of NWPU VHR-10 dataset, demonstrating the superiority and effectiveness
of the FRIFB compared to previous state-of-the-art methods
Cascaded Recurrent Neural Networks for Hyperspectral Image Classification
By considering the spectral signature as a sequence, recurrent neural
networks (RNNs) have been successfully used to learn discriminative features
from hyperspectral images (HSIs) recently. However, most of these models only
input the whole spectral bands into RNNs directly, which may not fully explore
the specific properties of HSIs. In this paper, we propose a cascaded RNN model
using gated recurrent units (GRUs) to explore the redundant and complementary
information of HSIs. It mainly consists of two RNN layers. The first RNN layer
is used to eliminate redundant information between adjacent spectral bands,
while the second RNN layer aims to learn the complementary information from
non-adjacent spectral bands. To improve the discriminative ability of the
learned features, we design two strategies for the proposed model. Besides,
considering the rich spatial information contained in HSIs, we further extend
the proposed model to its spectral-spatial counterpart by incorporating some
convolutional layers. To test the effectiveness of our proposed models, we
conduct experiments on two widely used HSIs. The experimental results show that
our proposed models can achieve better results than the compared models
Landscape Pattern Analysis and Quality Evaluation in Beijing Hanshiqiao Wetland Nature Reserve
AbstractTaking the Landsat TM and ASTER images of Hanshiqiao wetland nature reserve in 1988, 1996 and 2004 as data source, based on the landscape types from imagery classification, the reserve landscape pattern and its changes were analyzed, meanwhile, the landscape quality and its changes were evaluated and discussed. Several landscape pattern indices were analyzed, the results indicated that from 1988 to 2004, as the result of natural factors and human disturbances, the landscape structure has been changed, landscape fragmentation has become more and more serious, patches have been tended to regular shape, and connectivity of the natural wetland has been weakened. In addition, the landscape quality was evaluated based on the indicators of pressure, state and response. The results showed that during 1996-2004 periods, the landscape quality for Hanshiqiao wetland nature reserve has degraded obviously, which was mainly influenced by human activities breaking into wetland landscape. Effective wetland management and control is therefore needed to solve the issues of the wetland loss and degradation in Hanshiqiao wetland nature reserve
Low-Rank Representations Meets Deep Unfolding: A Generalized and Interpretable Network for Hyperspectral Anomaly Detection
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from
low resolution, simple background, and small size of the detection data. These
factors also limit the performance of the well-known low-rank representation
(LRR) models in terms of robustness on the separation of background and target
features and the reliance on manual parameter selection. To this end, we build
a new set of HAD benchmark datasets for improving the robustness of the HAD
algorithm in complex scenarios, AIR-HAD for short. Accordingly, we propose a
generalized and interpretable HAD network by deeply unfolding a
dictionary-learnable LLR model, named LRR-Net, which is capable of
spectrally decoupling the background structure and object properties in a more
generalized fashion and eliminating the bias introduced by vital interference
targets concurrently. In addition, LRR-Net integrates the solution process
of the Alternating Direction Method of Multipliers (ADMM) optimizer with the
deep network, guiding its search process and imparting a level of
interpretability to parameter optimization. Additionally, the integration of
physical models with DL techniques eliminates the need for manual parameter
tuning. The manually tuned parameters are seamlessly transformed into trainable
parameters for deep neural networks, facilitating a more efficient and
automated optimization process. Extensive experiments conducted on the AIR-HAD
dataset show the superiority of our LRR-Net in terms of detection
performance and generalization ability, compared to top-performing rivals.
Furthermore, the compilable codes and our AIR-HAD benchmark datasets in this
paper will be made available freely and openly at
\url{https://sites.google.com/view/danfeng-hong}
Graph Relation Network: Modeling Relations Between Scenes for Multilabel Remote-Sensing Image Classification and Retrieval
Due to the proliferation of large-scale remote-sensing (RS) archives with multiple annotations, multilabel RS scene classification and retrieval are becoming increasingly popular. Although some recent deep learning-based methods are able to achieve promising results in this context, the lack of research on how to learn embedding spaces under the multilabel assumption often makes these models unable to preserve complex semantic relations pervading aerial scenes, which is an important limitation in RS applications. To fill this gap, we propose a new graph relation network (GRN) for multilabel RS scene categorization. Our GRN is able to model the relations between samples (or scenes) by making use of a graph structure which is fed into network learning. For this purpose, we define a new loss function called scalable neighbor discriminative loss with binary cross entropy (SNDL-BCE) that is able to embed the graph structures through the networks more effectively. The proposed approach can guide deep learning techniques (such as convolutional neural networks) to a more discriminative metric space, where semantically similar RS scenes are closely embedded and dissimilar images are separated from a novel multilabel viewpoint. To achieve this goal, our GRN jointly maximizes a weighted leave-one-out K-nearest neighbors (KNN) score in the training set, where the weight matrix describes the contributions of the nearest neighbors associated with each RS image on its class decision, and the likelihood of the class discrimination in the multilabel scenario. An extensive experimental comparison, conducted on three multilabel RS scene data archives, validates the effectiveness of the proposed GRN in terms of KNN classification and image retrieval. The codes of this article will be made publicly available for reproducible research in the community
Spatial-Spectral Manifold Embedding of Hyperspectral Data
In recent years, hyperspectral imaging, also known as imaging spectroscopy,
has been paid an increasing interest in geoscience and remote sensing
community. Hyperspectral imagery is characterized by very rich spectral
information, which enables us to recognize the materials of interest lying on
the surface of the Earth more easier. We have to admit, however, that high
spectral dimension inevitably brings some drawbacks, such as expensive data
storage and transmission, information redundancy, etc. Therefore, to reduce the
spectral dimensionality effectively and learn more discriminative spectral
low-dimensional embedding, in this paper we propose a novel hyperspectral
embedding approach by simultaneously considering spatial and spectral
information, called spatial-spectral manifold embedding (SSME). Beyond the
pixel-wise spectral embedding approaches, SSME models the spatial and spectral
information jointly in a patch-based fashion. SSME not only learns the spectral
embedding by using the adjacency matrix obtained by similarity measurement
between spectral signatures, but also models the spatial neighbours of a target
pixel in hyperspectral scene by sharing the same weights (or edges) in the
process of learning embedding. Classification is explored as a potential
strategy to quantitatively evaluate the performance of learned embedding
representations. Classification is explored as a potential application for
quantitatively evaluating the performance of these hyperspectral embedding
algorithms. Extensive experiments conducted on the widely-used hyperspectral
datasets demonstrate the superiority and effectiveness of the proposed SSME as
compared to several state-of-the-art embedding methods
- …