208 research outputs found

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201

    SULoRA: Subspace Unmixing with Low-Rank Attribute Embedding for Hyperspectral Data Analysis

    Get PDF
    To support high-level analysis of spaceborne imaging spectroscopy (hyperspectral) imagery, spectral unmixing has been gaining significance in recent years. However, from the inevitable spectral variability, caused by illumination and topography change, atmospheric effects and so on, makes it difficult to accurately estimate abundance maps in spectral unmixing. Classical unmixing methods, e.g. linear mixing model (LMM), extended linear mixing model (ELMM), fail to robustly handle this issue, particularly facing complex spectral variability. To this end, we propose a subspace-based unmixing model using low-rank learning strategy, called subspace unmixing with low-rank attribute embedding (SULoRA), robustly against spectral variability in inverse problems of hyperspectral unmixing. Unlike those previous approaches that unmix the spectral signatures directly in original space, SULoRA is a general subspace unmixing framework that jointly estimates subspace projections and abundance maps in order to find a ‘raw’ subspace which is more suitable for carrying out the unmixing procedure. More importantly, we model such ‘raw’ subspace with low-rank attribute embedding. By projecting the original data into a low-rank subspace, SULoRA can effectively address various spectral variabilities in spectral unmixing. Furthermore, we adopt an alternating direction method of multipliers (ADMM) based to solve the resulting optimization problem. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods

    Fourier-based Rotation-invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection

    Get PDF
    Geospatial object detection of remote sensing imagery has been attracting an increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for geospatial object detection in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 dataset, demonstrating the superiority and effectiveness of the FRIFB compared to previous state-of-the-art methods

    Cascaded Recurrent Neural Networks for Hyperspectral Image Classification

    Get PDF
    By considering the spectral signature as a sequence, recurrent neural networks (RNNs) have been successfully used to learn discriminative features from hyperspectral images (HSIs) recently. However, most of these models only input the whole spectral bands into RNNs directly, which may not fully explore the specific properties of HSIs. In this paper, we propose a cascaded RNN model using gated recurrent units (GRUs) to explore the redundant and complementary information of HSIs. It mainly consists of two RNN layers. The first RNN layer is used to eliminate redundant information between adjacent spectral bands, while the second RNN layer aims to learn the complementary information from non-adjacent spectral bands. To improve the discriminative ability of the learned features, we design two strategies for the proposed model. Besides, considering the rich spatial information contained in HSIs, we further extend the proposed model to its spectral-spatial counterpart by incorporating some convolutional layers. To test the effectiveness of our proposed models, we conduct experiments on two widely used HSIs. The experimental results show that our proposed models can achieve better results than the compared models

    Landscape Pattern Analysis and Quality Evaluation in Beijing Hanshiqiao Wetland Nature Reserve

    Get PDF
    AbstractTaking the Landsat TM and ASTER images of Hanshiqiao wetland nature reserve in 1988, 1996 and 2004 as data source, based on the landscape types from imagery classification, the reserve landscape pattern and its changes were analyzed, meanwhile, the landscape quality and its changes were evaluated and discussed. Several landscape pattern indices were analyzed, the results indicated that from 1988 to 2004, as the result of natural factors and human disturbances, the landscape structure has been changed, landscape fragmentation has become more and more serious, patches have been tended to regular shape, and connectivity of the natural wetland has been weakened. In addition, the landscape quality was evaluated based on the indicators of pressure, state and response. The results showed that during 1996-2004 periods, the landscape quality for Hanshiqiao wetland nature reserve has degraded obviously, which was mainly influenced by human activities breaking into wetland landscape. Effective wetland management and control is therefore needed to solve the issues of the wetland loss and degradation in Hanshiqiao wetland nature reserve

    Low-Rank Representations Meets Deep Unfolding: A Generalized and Interpretable Network for Hyperspectral Anomaly Detection

    Full text link
    Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data. These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness on the separation of background and target features and the reliance on manual parameter selection. To this end, we build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short. Accordingly, we propose a generalized and interpretable HAD network by deeply unfolding a dictionary-learnable LLR model, named LRR-Net+^+, which is capable of spectrally decoupling the background structure and object properties in a more generalized fashion and eliminating the bias introduced by vital interference targets concurrently. In addition, LRR-Net+^+ integrates the solution process of the Alternating Direction Method of Multipliers (ADMM) optimizer with the deep network, guiding its search process and imparting a level of interpretability to parameter optimization. Additionally, the integration of physical models with DL techniques eliminates the need for manual parameter tuning. The manually tuned parameters are seamlessly transformed into trainable parameters for deep neural networks, facilitating a more efficient and automated optimization process. Extensive experiments conducted on the AIR-HAD dataset show the superiority of our LRR-Net+^+ in terms of detection performance and generalization ability, compared to top-performing rivals. Furthermore, the compilable codes and our AIR-HAD benchmark datasets in this paper will be made available freely and openly at \url{https://sites.google.com/view/danfeng-hong}

    Graph Relation Network: Modeling Relations Between Scenes for Multilabel Remote-Sensing Image Classification and Retrieval

    Get PDF
    Due to the proliferation of large-scale remote-sensing (RS) archives with multiple annotations, multilabel RS scene classification and retrieval are becoming increasingly popular. Although some recent deep learning-based methods are able to achieve promising results in this context, the lack of research on how to learn embedding spaces under the multilabel assumption often makes these models unable to preserve complex semantic relations pervading aerial scenes, which is an important limitation in RS applications. To fill this gap, we propose a new graph relation network (GRN) for multilabel RS scene categorization. Our GRN is able to model the relations between samples (or scenes) by making use of a graph structure which is fed into network learning. For this purpose, we define a new loss function called scalable neighbor discriminative loss with binary cross entropy (SNDL-BCE) that is able to embed the graph structures through the networks more effectively. The proposed approach can guide deep learning techniques (such as convolutional neural networks) to a more discriminative metric space, where semantically similar RS scenes are closely embedded and dissimilar images are separated from a novel multilabel viewpoint. To achieve this goal, our GRN jointly maximizes a weighted leave-one-out K-nearest neighbors (KNN) score in the training set, where the weight matrix describes the contributions of the nearest neighbors associated with each RS image on its class decision, and the likelihood of the class discrimination in the multilabel scenario. An extensive experimental comparison, conducted on three multilabel RS scene data archives, validates the effectiveness of the proposed GRN in terms of KNN classification and image retrieval. The codes of this article will be made publicly available for reproducible research in the community

    Spatial-Spectral Manifold Embedding of Hyperspectral Data

    Get PDF
    In recent years, hyperspectral imaging, also known as imaging spectroscopy, has been paid an increasing interest in geoscience and remote sensing community. Hyperspectral imagery is characterized by very rich spectral information, which enables us to recognize the materials of interest lying on the surface of the Earth more easier. We have to admit, however, that high spectral dimension inevitably brings some drawbacks, such as expensive data storage and transmission, information redundancy, etc. Therefore, to reduce the spectral dimensionality effectively and learn more discriminative spectral low-dimensional embedding, in this paper we propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information, called spatial-spectral manifold embedding (SSME). Beyond the pixel-wise spectral embedding approaches, SSME models the spatial and spectral information jointly in a patch-based fashion. SSME not only learns the spectral embedding by using the adjacency matrix obtained by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral scene by sharing the same weights (or edges) in the process of learning embedding. Classification is explored as a potential strategy to quantitatively evaluate the performance of learned embedding representations. Classification is explored as a potential application for quantitatively evaluating the performance of these hyperspectral embedding algorithms. Extensive experiments conducted on the widely-used hyperspectral datasets demonstrate the superiority and effectiveness of the proposed SSME as compared to several state-of-the-art embedding methods
    • …
    corecore