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ABSTRACT:

In recent years, hyperspectral imaging, also known as imaging spectroscopy, has been paid an increasing interest in geoscience and

remote sensing community. Hyperspectral imagery is characterized by very rich spectral information, which enables us to recognize

the materials of interest lying on the surface of the Earth more easier. We have to admit, however, that high spectral dimension

inevitably brings some drawbacks, such as expensive data storage and transmission, information redundancy, etc. Therefore, to

reduce the spectral dimensionality effectively and learn more discriminative spectral low-dimensional embedding, in this paper we

propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information, called spatial-

spectral manifold embedding (SSME). Beyond the pixel-wise spectral embedding approaches, SSME models the spatial and spectral

information jointly in a patch-based fashion. SSME not only learns the spectral embedding by using the adjacency matrix obtained

by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral

scene by sharing the same weights (or edges) in the process of learning embedding. Classification is explored as a potential strategy

to quantitatively evaluate the performance of learned embedding representations. Classification is explored as a potential application

for quantitatively evaluating the performance of these hyperspectral embedding algorithms. Extensive experiments conducted on

the widely-used hyperspectral datasets demonstrate the superiority and effectiveness of the proposed SSME as compared to several

state-of-the-art embedding methods.

1. INTRODUCTION

Currently operational hyperspectral missions, such as DLR Earth

Sensing Imaging Spectrometer (DESIS) (Krutz et al., 2018),

Gaofen-5 (Ren et al., 2017), Environmental Mapping and Ana-

lysis Program (EnMAP) (Guanter et al., 2009), enable the re-

cognition and identification of the materials of interest at a more

accurate level compared to the multispectral data (Hong et al.,

2015) or RGB data (Wu et al., 2018, Wu et al., 2019). However,

due to the effects of curse of dimensionality, some drawbacks

are inevitably introduced with the high spectral dimensionality,

possibly leading to the degradation of spectral information. As

a result, the dimensionality reduction is a necessary step before

the high-level data analysis is performed.

Over the past decades, a large amount of dimensionality reduc-

tion approaches have been successfully applied in many com-

puter vision related fields, such as low-level vision analysis (Bi

et al., 2017, Kang et al., 2020), biometric (Hong et al., 2014,

Hong et al., 2016b), large-scale data classification (Hong et

al., 2016c, Huang et al., 2020a, Bi et al., 2019a, Huang et al.,

2020b, Bi et al., 2019b), multimodal data analysis (Zhang et

al., 2019b, Zhang et al., 2019a, Hong et al., 2020a), data fusion

(Hu et al., 2019a, Hu et al., 2019c), etc. Among them, spec-

tral manifold embedding, as a popular topic in hyperspectral

dimensionality reduction (Hong et al., 2016a), has attracted a

growing attention in various hyperspectral remote sensing ap-

plications, such as hyperspectral image denoising (Cao et al.,

2018b, Cao et al., 2018a), land cover and land use classifica-

tion (Hang et al., 2019, Hong et al., 2019d), spectral unmixing

(Hong, Zhu, 2018, Hong et al., 2019b, Yao et al., 2019), target

detection and recognition (Li et al., 2018, Wu et al., 2020a),

and multimodal data analysis (Liu et al., 2019, Hong et al.,

2019c, Hang et al., 2020). It is well known that the hyperspec-

tral imagery is a three-dimensional imaging product by con-

tinuously scanning the region of interest (ROI) to obtain hun-

dreds or thousands of two-dimensional images finely sampled

from the wavelength nearly covering the whole electromagnetic

spectrum, e.g., 300nm to 2500nm. This enables the identi-

fication and detection of materials lying on the surface of the

Earth at a more accurate level compared to other optical data,

e.g., RGB. In the meanwhile, high dimensional spectral sig-

natures are also introduced some serious drawbacks. For ex-

ample, high storage and computational cost, redundant inform-

ation, and complex noises caused by atmospheric correlation

would have a negative influence on the spectral discrimination

of hyperspectral images, further degrading the performance of

high-level applications, e.g., classification, detection.

Recently, enormous effects have been made to enhance the qual-
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Figure 1. An illustration for the holistic workflow of the proposed SSME model.

ity of low dimensional hyperspectral embedding in the spectral

domain. More specifically, Hong et al. (Hong et al., 2016a) pro-

posed robustly select the neighbouring pixels for hyperspectral

dimensionality reduction. The same investigators in (Hong et

al., 2017) further design a novel hyperspectral low-dimensional

embedding algorithm to learn a robust local manifold represent-

ation for dimensionality reduction of hyperspectral images. In-

spired by the recent success of deep learning (Wu et al., 2020b),

Hong et al. (Hong et al., 2018) developed a joint and progress-

ive learning strategy to learn the low-dimensional representa-

tions by using manifold regularization techniques in each layer.

The proposed deep embedding model has demonstrated its su-

periority and effectiveness in the hyperspectral dimensionality

reduction task.

Yet the spatial information (Hong et al., 2020b) is less investig-

ated by the researchers who are working in the remote sensing

community in the process of hyperspectral embedding (Rasti et

al., 2020). It is well known that the spatial information has been

proven to be effective in the hyperspectral image classification

task (Cao et al., 2020), owing to the important and reasonable

assumption in hyperspectral images, that is, the target pixel and

its neighboring pixels would share the same category to a great

extent. We have to admit, however, that the spatial information

modeling is capable of improving the discriminative ability of

learned embedding representations more effectively, as the spa-

tial structure is one of most important physically meaningful

properties in hyperspectral imaging.

For the aforementioned reason, in this paper we attempt to de-

velop a novel hyperspectral embedding approach by simultan-

eously considering spatial and spectral information, called spatial-

spectral manifold embedding (SSME). SSME not only learns

the spectral embedding by using the adjacency matrix obtained

by similarity measurement between spectral signatures, but also

models the spatial neighbours of a target pixel in hyperspectral

scene by sharing the same weights (or edges) in the process of

learning embedding. Classification is explored as a potential

strategy to quantitatively evaluate the performance of learned

embedding representations. Extensive experiments conducted

on the widely-used hyperspectral datasets demonstrate the su-

periority and effectiveness of the proposed SSME as compared

to several state-of-the-art embedding methods in terms of over-

all accuracy (OA), average accuracy (AA), and kappa coeffi-

cient (κ). More specifically, our contributions of this paper can

be highlighted as follows:

• A novel hyperspectral dimensionality reduction approach

– spatial-spectral manifold embedding (SSME) – is de-

vised to learn the low-dimensional manifold embedding

of the hyperspectral data.

• Beyond the pixel-wise spectral embedding, we propose to

construct the spatial-spectral weight matrix in spectral em-

bedding, yielding more smooth low dimensional hyper-

spectral embedding.

• Experimental results conducted on a widely-used hyper-

spectral data demonstrate the effectiveness and superiority

of the proposed SSME approach.

The rest of this paper is organized as follows. Section 2 details

the methodology of the proposed SSME approach with some

necessary formulation derivation. Accordingly, extensive ex-

periments are conducted in comparison with several compet-

itive methods in Section 3. Finally, we draw a conclusion in

Section 4.

2. METHODOLOGY

Manifold embedding, also known as manifold learning, is built

on the graph embedding framework (Yan et al., 2006) by at-

tempts to capture the underlying structure of the original data

and preserve it in the latent embedding space. The embedding

process mainly consists of three steps in the following.

• Neighbor selection on the spectral domain by spectrally

measuring the similarities between pixels;

• Adjacency matrix computation between each target pixel

and its neighbouring pixels by using regression-based meth-

ods (Hong, 2019) or Gaussian kernel functions;

• Calculation of embedding by solving a generalized eigen-

decomposition problem.

Unlike the previous manifold embedding techniques, such as

locally linear embedding (LLE) (Roweis, Saul, 2000), Lapla-

cian eigenmaps (LE) (Belkin, Niyogi, 2002), and their linear-

ized approaches: locality persevering projections (LPP) (He,

Niyogi, 2004) and neighborhood preserving embedding (NPE)

(He et al., 2005), that only conduct on the spectral domain, the

newly-proposed spatial-spectral manifold embedding (SSME)

performs the low-dimensional embedding process from both

spatial and spectral domains in a joint fashion. Similarly, SSME

follows the graph embedding framework as well. Given a hy-

perspectral image X ∈ RD×N with D bands by N pixels, xi,j

is denoted as the spectral signature located in (i, j) of the im-

age. We then have

• Spatial-spectral neighbor selection by using spatially prior

knowledge and Euclidean distance based similarity meas-

urement in spectral domains, respectively, which can be

written as follows

φ
spa
i ← [xi,j ,xi−1,j ,xi,j−1,xi+1,j ,xi,j+1],

φ
spe
i ← sort{{‖xi − xk‖2}

N
i=1}

N
k=1.

(1)

φ
spa
i and φ

spe
i denote the spatial and spectral neighbours

of the target pixel xi, where the latter one can be obtained

by sorting the Euclidean distances (sort).



• Spatially-induced adjacency matrix generation by comput-

ing the regression coefficients or weights between the tar-

get pixels and their spatial-spectral neighbours. The pro-

cess can be formulated by

min
wi,0

∑

j∈φ
spa

i

‖xi,j −
∑

k∈φ
spe

i

xi,kwi,k,j‖
2
2

s.t. ‖
∑

k∈φ
spe

i

xi,k(4wi,k,0 −

4
∑

k=1

wi,k,j)‖
2
2 ≤ η,

w
T
i,jwi,j = 1,

(2)

where xi,k ∈ φ
spe

i,k represents the k nearest neighbors se-

lected from the spectral domain, and j ∈ φ
spa
i is defined as

the target pixel in the HSI and its neighbouring pixels, re-

spectively. Accordingly, wi,j = [wi,1,j , ..., wi,k,j , ...], j ∈
φ
spa
i , where wi,0 is the to-be-estimated regression coeffi-

cients of the target pixel, and η is the tolerate error (10−3

in our case).

With the estimated w, the affinity weights A can be ob-

tained by using the following equation:

Ai,0,k =

{

wi,0,k +wk,i,0 −wi,0,kwk,i,0, k ∈ φ
spe
i ,

0, otherwise.

(3)

• Joint embedding guided by the aforementioned adjacency

matrix by solving a generalized eigen-decomposition prob-

lem. Once the affinity matrix A is given, the final hy-

perspectral embedding Y = {yN
i=1} can be computed by

solving the minimization problem as follows.

min
Y

N
∑

i=1

‖yi −
∑

k∈φ
spe

i,k

Ai,kyk‖
2
2,

s.t.

N
∑

i=1

yi = 0,
1

N

N
∑

i=1

yiy
T
i = I.

(4)

Fig. 1 illustrates a workflow of our proposed SSMR method for

extracting the low-dimensional hyperspectral embedding rep-

resentations.

3. EXPERIMENTS

3.1 Data Description

To assess the effectiveness of the proposed SSME in hyperspec-

tral embedding task, classification is selected to be a potential

strategy (Gao et al., 2020). In our case, a simple but efficient

classifier: nearest neighbour (NN), is used. Moreover, as a

widely-used and classic hyperspectral dataset, the Indian pines

scene is chosen in our experiments. It was acquired by the Air-

borne Visible Infrared Imaging Spectrometer (AVIRIS) sensor

in the northwestern of Indiana, USA, which consists of 145 ×
145 pixels with 220 spectral bands covering the wavelength

from 400nm to 2500nm. There are 16 classes in the studied

scene. A fixed and popular training and test sets widely used in

many references (Hong et al., 2019a) is given in Table 1, and a

false-color image of the hyperspectral data is shown in the first

place of Fig. 2.

Table 1. Class names as well as the number of training and test

samples for each class on the hyperspectral dataset over the area

of Indine Pines.

No. Class Name Training Samples Test Samples

Class 1 CornNotill 50 1384
Class 2 CornMintill 50 784
Class 3 Corn 50 184
Class 4 GrassPasture 50 447
Class 5 GrassTrees 50 697
Class 6 HayWindrowed 50 439
Class 7 SoybeanNotill 50 918
Class 8 SoybeanMintill 50 2418
Class 9 SoybeanClean 50 564
Class 10 Wheat 50 162
Class 11 Woods 50 1244
Class 12 BuildingsGrassTrees 50 330
Class 13 StoneSteelTowers 50 45
Class 14 Alfalfa 15 39
Class 15 GrassPastureMowed 15 11
Class 16 Oats 15 5

Total 695 9671

Table 2. Classification performance comparison between

different algorithms on the Indian Pines dataset. The best results

are shown in bold. Furthermore, the values behind the name of

algorithms mean the dimensions used in these compared

methods.

Methods OSF (220) PCA (30) LE (60) LLE (60) SSME (16)

OA 65.89 65.76 64.45 69.05 76.46
AA 75.71 75.70 74.84 76.94 86.67
κ 0.6148 0.6138 0.5997 0.6500 0.7350

Class 1 51.66 51.81 50.51 56.00 71.97
Class 2 57.40 57.91 56.51 57.14 78.95
Class 3 70.65 69.57 67.39 70.11 90.22
Class 4 88.14 88.37 87.92 90.83 92.39
Class 5 81.78 81.78 80.92 90.82 71.45
Class 6 95.90 96.13 94.53 95.44 98.63
Class 7 66.56 67.97 68.30 68.52 84.31
Class 8 55.21 54.22 52.11 59.10 59.26
Class 9 53.01 52.48 50.53 59.40 84.75

Class 10 98.15 98.15 97.53 99.38 98.15
Class 11 82.88 82.48 80.95 81.11 82.07
Class 12 50.91 51.21 51.21 66.06 93.64
Class 13 97.78 97.78 97.78 93.33 97.78
Class 14 79.49 79.49 79.49 82.05 92.31
Class 15 81.82 81.82 81.82 81.82 90.91
Class 16 100.00 100.00 100.00 80.00 100.00

3.2 Results

A false-color image of this scene is shown in the first column

of Fig. 2 and the distribution of training and test sets are also

given in the subsequent column of Fig. 2.

Several hyperspectral embedding baselines are selected to eval-

uate the quality of learned embedding representations using the

different methods, such as the original spectral features (OSF),

principal component analysis (PCA) (Wold et al., 1987), LE,

LLE, and ours (SSME). Quantitative classification accuracies

of these compared methods in terms of OA, AA, and κ are lis-

ted in Table 2, while Fig. 2 visualizes the classification maps

with false-color image and the distributions of training and test

sets.

Overall, the results using PCA are basically consistent with

those using OSF in all indices. Also, LE holds similar em-

bedding results assessed by means of classification tasks com-

pared to PCA and OSF. By linearly regressing the local neigh-

boring relationship of a target pixel, LLE performs better than

the aforementioned embedding methods at an increase of about

5% OAs. As expected, our proposed SSME outperforms others

dramatically by jointly considering spatial and spectral inform-

ation, showing the superiority in hyperspectral low-dimensional

embedding tasks. In addition, the accuracies for most of class
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Figure 2. Classification maps obtained by different hyperspectral embedding approaches on the Indine Pines dataset.

using our proposed SSME are higher than those using other

competitors, as listed in Table 2.

4. CONCLUSION

In this paper, we propose a novel spatial-spectral hyperspec-

tral embedding approach, called spatial-spectral manifold em-

bedding (SSME), for hyperspectral dimensionality reduction in

remote sensing community. SSME not only utilizes the spec-

tral information but also modals the spatial information when

calculating the low-dimensional embedding. We have to ad-

mit, however, that although the SSME is capable of extracting

the hyperspectral features well, yet the discriminative ability for

feature representations still remains limited due to the relatively

weak data fitting ability (linearized). To this end, we would

like to introduce more powerful techniques, e.g., deep learning,

to further enhance the representation ability in extracted low-

dimensional embedding or introduce additional data sources to

better guide the hyperspectral embedding, e.g., light detection

and ranging (LiDAR) (Huang et al., 2019), synthetic aperture

radar (SAR) (Hu et al., 2019b), multispectral data, in the future

work.
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