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Abstract. Despite the fact that nonlinear subspace learning techniques
(e.g. manifold learning) have successfully applied to data representation,
there is still room for improvement in explainability (explicit mapping),
generalization (out-of-samples), and cost-effectiveness (linearization). To
this end, a novel linearized subspace learning technique is developed in a
joint and progressive way, called joint and progressive learning strategy
(J-Play), with its application to multi-label classification. The J-Play
learns high-level and semantically meaningful feature representation from
high-dimensional data by 1) jointly performing multiple subspace learn-
ing and classification to find a latent subspace where samples are ex-
pected to be better classified; 2) progressively learning multi-coupled
projections to linearly approach the optimal mapping bridging the orig-
inal space with the most discriminative subspace; 3) locally embedding
manifold structure in each learnable latent subspace. Extensive experi-
ments are performed to demonstrate the superiority and effectiveness of
the proposed method in comparison with previous state-of-the-art meth-
ods.

Keywords: Alternating direction method of multipliers, high-dimensional
data, manifold regularization, multi-label classification, joint learning,
progressive learning

1 Introduction

High-dimensional data are often characterized by very rich and diverse informa-
tion, which enables us to classify or recognize the targets more effectively and
analyze data attributes more easily, but inevitably introduces some drawbacks
(e.g. information redundancy, complex noise effects, high storage-consuming,
etc.) due to the curve of dimensionality. A general way to address this problem
is to learn a low-dimensional and high-discriminative feature representation. In
general, it is also called as dimensionality reduction or subspace learning. In
the past decades, a large number of subspace learning techniques have been
developed in the machine learning community, with successful applications to
biometrics [1][2], image/video analysis [3], visualization [4], hyperspectral data
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Original data space Label space

Subspace learning, i.e. PCA, LPP, LDA, etc.  Classification

Subspace
Optimal subspace

Seprately performing subspace learning and classification 

Original data space Subspace Label space

Jointly conducting subspace learning and classifcation

Property-labeled projection PSubspace projection θ

Jointly & Progressively learning with local manifold preserving   

Label spaceOriginal data space
Latent subspaces ( )1,...,

l
l m=θ

P

Local topological structure

Low HighFeature discriminative ability

Optimal classifcation

Enough to be represented by only single projection

Fig. 1. The motivation interpolation from separately performing subspace learning
and classification to joint learning to joint & progressive learning again. The subspaces
learned from our model indicates the higher feature discriminative ability as explained
by the green bottom line.

dimensionality reduction and classification [5]. These subspace learning tech-
niques are generally categorized into linear or nonlinear methods. Theoretically,
nonlinear approaches are capable of curving the data structure in a more effec-
tive way. There is, however, no explicit mapping function (poor explainability),
and meanwhile it is relatively hard to embed the out-of-samples into the learned
subspace (weak generalization) as well as high computational cost (lack of cost-
effectiveness). Additionally, for a task of multi-label classification, these classic
subspace learning techniques, such as principal component analysis (PCA) [6],
local discriminant analysis (LDA) [1], local fisher discriminant analysis (LFDA)
[7], manifold learning (e.g. Laplacian eigenmaps (LE) [8], locally linear embed-
ding (LLE) [9]) and their linearized methods (e.g. locality preserving projection
(LPP)[10], neighborhood preserving embedding (NPE)[11]), are commonly ap-
plied as a disjunct feature learning step before classification, whose limitation
mainly lies in a weak connection between features by subspace learning and la-
bel space (see the top panel of Fig. 1). It is unknown which learned features (or
subspace) can improve the classification.
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Recently, a feasible solution to the above problems can be generalized as a
joint learning framework [12] that simultaneously considers linearized subspace
learning and classification, as illustrated in the middle panel of Fig. 1. Following
it, more advanced methods have been proposed and applied in various fields,
including supervised dimensionality reduction (e.g. least-squares dimensionality
reduction (LSDR) [13] and its variants: least-squares quadratic mutual informa-
tion derivative (LSQMID) [14]), multi-modal data matching and retrieval [15,
16], and heterogeneous features learning for activity recognition [17, 18]. In these
work, the learned features (or subspace) and label information are effectively con-
nected by regression techniques (e.g. linear regression) to adaptively estimate a
latent and discriminative subspace. Despite this, they still fail to find an optimal
subspace, as single linear projection is hardly enough to represent the complex
transformation from the original data space to the potential optimal subspace.

Motivated by the aforementioned studies, we propose a novel joint and progre-
ssive learning strategy (J-Play) to linearly find an optimal subspace for general
multi-label classification, illustrated in the bottom panel of Fig. 1. We practi-
cally extend the existing joint learning framework by learning a series of sub-
spaces instead of single subspace, aiming at progressively converting the original
data space to a potentially optimal subspace through multi-coupled intermediate
transformations [19]. Theoretically, by increasing the number of subspaces, cou-
pled subspace variations are gradually narrowed down to a very small range that
can be represented effectively via a linear transformation. This renders us to find
a good solution easier, especially when the model is complex and non-convex.
We also contribute to structure learning in each latent subspace by locally em-
bedding manifold structure.

The main highlights of our work can be summarized as follows:
– A linearized progressive learning strategy is proposed to describe the varia-

tions from the original data space to potentially optimal subspace, tending
to find a better solution. A joint learning framework that simultaneously
estimates subspace projections (connect the original space and the latent
subspaces) and a property-labeled projection (connect the learned latent
subspaces and label space) is considered to find a discriminative subspace
where samples are expected to be better classified.

– Structure learning with local manifold regularization is performed in each
latent subspace.

– Based on the above techniques, a novel joint and progressive learning strat-
egy (J-Play) is developed for multi-label classification.

– An iterative optimization algorithm based on the alternating direction method
of multipliers (ADMM) is designed to solve the proposed model.

2 Joint & Progressive Learning Strategy (J-Play)

2.1 Notations

Let X = [x1, ...,xk, ...,xN ] ∈ Rd0×N be a data matrix with d0 dimensions and
N samples, and the matrix of corresponding class labels be Y ∈ {0, 1}L×N . The
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kth column of Y is yk = [yk1, ...,ykt, ...,ykL]T ∈ RL×1 whose each element can
be defined as follows:

ykt =

{
1, if yk belongs to the t-th class;

0, otherwise.
(1)

In our task, we aim to learn a set of coupled projections {Θl}ml=1 ∈ Rdl×dl−1 and
a property-labeled projection P ∈ RL×dm , where m stands for the number of
subspace projections and {dl}ml=1 are defined as the dimensions of those latent
subspaces respectively, while d0 is specified as the dimension of X.

2.2 Basic Framework of J-Play from the View of Subspace Learning

Subspace learning is to find a low-dimensional space where we expect to maxi-
mize certain properties of the original data, e.g. variance (PCA), discriminative
ability (LDA), and graph structure (manifold learning). Yan et al. [20] summa-
rized these subspace learning methods in a general graph embedding framework.

Given an undirected similarity graph G = {X,W} with the vertices X ∈
{x1, ...,xN} and the adjacency matrix W ∈ RN×N , we can intuitively measure
the similarities among the data. By preserving the similarities relationship, the
high-dimensional data can be well embedded into the low-dimensional space,
which can be formulated by denoting the low-dimensional data representation
as Z ∈ Rd×N (d� d0) in the following

min
Z

tr(ZLZT), s.t. ZDZT = I, (2)

where Dii =
∑
j Wij is a diagonal matrix, L is a Laplacian matrix defined

by L = D − W [21], and I is the identity matrix. In our case, we aim at
learning multi-coupled linear projections to find optimal mapping, therefore a
linearized subspace learning problem can be reformulated on the basis of Eq. (2)
by substituting ΘX for Z

min
Θ

tr(ΘXLXTΘT), s.t. ΘXDXTΘT = I, (3)

which can be solved by generalized eigenvalue decomposition.
Different from the previously mentioned subspace learning methods, a re-

gression-based joint learning model [12] can explicitly bridge the learned latent
subspace and labels, which can be formulated in a general form:

min
P,Θ

1

2
E(P,Θ) +

β

2
Φ(Θ) +

γ

2
Ψ(P), (4)

where E(P,Θ) is the error term defined as ‖Y − PΘX‖2F, ‖•‖F represents a
Frobenius norm, β and γ are the corresponding penalty parameters. Φ and Ψ
denote regularization functions, which might be l1 norm, l2 norm, l2,1 norm or
manifold regularization. Herein, the variable Θ is called intermediate transfor-
mation and the corresponding subspace generated by Θ is called latent subspace
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Fig. 2. The illustration of the proposed J-Play framework.

where the feature can be further structurally learned and represented in a more
suitable way [18].

On the basis of Eq. (4), we further extend the framework by following a
progressive learning strategy:

min
P,{Θl}ml=1

1

2
E(P, {Θl}ml=1) +

β

2
Φ({Θl}ml=1) +

γ

2
Ψ(P), (5)

where E(P, {Θl}ml=1) is specified as ‖Y−PΘm...Θl...Θ1X‖2F and {Θl}ml=1 rep-
resent a set of intermediate transformations.

2.3 Problem Formulation

Following the general framework given in Eq.(5), the proposed J-Play can be
formulated as the following constrained optimization problem:

min
P,{Θl}ml=1

1

2
Υ({Θl}ml=1) +

α

2
E(P, {Θl}ml=1) +

β

2
Φ({Θl}ml=1) +

γ

2
Ψ(P)

s.t. Xl = ΘlXl−1, Xl � 0, ‖xlk‖2 � 1, ∀l = 1, 2, ...,m,

(6)

where X is assigned to X0, while α, β, and γ are three penalty parameters corre-
sponding to the different terms, which aim at balancing the importance between
the terms. Fig. 2 illustrates the J-Play framework. Since Eq. (6) is a typically ill-
posed problem, reasonable assumptions or priors need to be introduced to search
a solution in a narrowed range effectively. More specifically, we cast Eq.(6) as a
least-square regression problem with reconstruction loss term (Υ(•)), prediction
loss term (E(•)) and two regularization terms (Φ(•) and Ψ(•)). We detail these
terms one by one as follows.

1) Reconstruction Loss Term Υ({Θl}ml=1): Without any constraints or prior,
directly estimating multi-coupled projections in J-Play is hardly performed with
the increase of the number of estimated projections. This can be reasonably
explained by gradient missing between the two neighboring variables estimated
in the process of optimization. That is, the variations between these neighboring
projections are made to be tiny and even zero. In particular, when the number
of projections increases to a certain extent, most of learned projections tend to
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Algorithm 1: Joint & Progressive Learning Strategy (J-Play)
Input: Y,X,L, and parameters α, β, γ and maxIter.
Output: {Θl}ml=1.

1 Initialization Step:
2 Greedily initialize Θl corresponding to each latent subspace:
3 for l = 1 : m do
4 Θ0

l ← LPP (Xl−1)

5 Θl ← AutoRULe(Xl−1,Θ
0
l ,L)

6 Xl ← ΘlXl−1

7 end
8 Fine-tuning Step:
9 t = 0, ζ = 1e− 4;

10 while not converged or t > maxIter do
11 Fix other variables to update P by solving a subproblem of P;
12 for i = 1 : m do
13 Fix other variables to update Θt+1

l by solving a subproblem of Θl;
14 end

15 Compute the objective function value Objt+1 and check the convergence condition: if

|Objt+1−Objt

Objt
| < ζ then

16 Stop iteration;
17 else
18 t← t+ 1;
19 end
20 end

be zero and become meaningless. To this end, we adopt a kind of autoencoder-
like scheme to make the learned subspace projected back to the original space
as much as possible. The benefits of the scheme are, on one hand, to prevent
the data over-fitting to some extent, especially avoiding overmuch noises from
being considered; on the other hand, to establish an effective link between the
original space and the subspace, making the learned subspace more meaningful.
Therefore, the resulting expression is

Υ({Θl}ml=1) =
∑m

l=1
‖Xl−1 −ΘT

l ΘlXl−1‖2F. (7)

In our case, to fully utilize the advantages of this term, we consider it in each
latent subspace as shown in Eq.(7).

2) Predication Loss Term E(P, {Θl}ml=1): This term is to minimize the empir-
ical risk between the original data and the corresponding labels through multi-
coupled projections in a progressive way, which can be formulated as

E(P, {Θl}ml=1) = ‖Y −PΘm...Θl...Θ1X‖2F. (8)

3) Local Manifold Regularization Φ({Θl}ml=1): As introduced in [16], a man-
ifold structure is an important prior for subspace learning. Superior to vector-
based feature learning, such as artificial neural network (ANN), a manifold struc-
ture can effectively capture the intrinsic structure between samples. To facilitate
structure learning in J-Play, we perform the local manifold regularization to each
latent subspace. Specifically, this term can be expressed by

Φ({Θl}ml=1) =
∑m

l=1
tr(ΘlXl−1LXT

l−1Θ
T
l ). (9)

4) Regression Coefficient Regularization Ψ(P): The regularization term can pro-
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mote us to derive a more reasonable solution with a reliable generalization to
our model, which can be written as

Ψ(P) = ‖P‖2F. (10)

Moreover, the non-negativity constraint with respect to each learned dimension-
reduced feature (e.g. {Xl}ml=1 � 0) is considered since we aim to obtain a mean-
ingful low-dimensional feature representation similar to original image data ac-
quired in a non-negative unit. In addition to the non-negativity constraint, we
also impose a norm constraint 1 for sample-based of each subspace: ‖xlk‖2 �
1,∀k = 1, ..., N and l = 1, ...,m.

2.4 Model Optimization

Considering the complexity and the non-convexity of our model, we pretrain our
model to have an initial approximation of subspace projections {Θl}ml=1 as this
can greatly reduce the model’s training time and also help finding an optimal
solution easier. This is a common tactic that has been successfully employed in
deep autoencoders [23]. Inspired by this trick, we propose a pre-training model
with respect to Θl,∀l = 1, ...,m by simplifying Eq.(6) as

min
Θl

1

2
Υ(Θl) +

η

2
Φ(Θl) s.t. Xl � 0, ‖xlk‖2 � 1, (11)

which is named as auto-reconstructing unsupervised learning (AutoRULe).
Given the outputs of AutoRULe, the problem of Eq. (6) can be more effec-
tively solved by an alternatively minimizing strategy that separately solves two
subproblems with respect to {Θl}ml=1 and P. Therefore, the global algorithm of
J-Play can be summarized in Algorithm 1,where AutoRULe is initialized by
LPP.

The pre-training method (AutoRULe) can be effectively solved via the ADMM-
based framework. Following this, we consider an equivalent form of Eq. (11) by
introducing multiple auxiliary variables H, G, Q and S to replace Xl, Θl, X+

l

and X∼l , respectively, where ()+ denotes an operator that converts each com-
ponent of the matrix to its absolute value and ()∼ is a proximal operator for
solving the constraint of ‖xlk‖2 � 1 [24], written as follows

min
Θl,H,G,Q,S

1

2
Υ(G,H) +

η

2
Φ(Θl) =

1

2
‖Xl−1 −GTH‖2F +

η

2
tr(XlLXT

l )

s.t. Q � 0, ‖sk‖2 � 1, Xl = ΘlXl−1,

Xl = H, Θl = G, Xl = Q, Xl = S.

(12)

1 Regarding this constraint,please refer to [22] for more details.
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The augmented Lagrangian version of Eq. (12) is

L µ

(
Θl,H,G,Q,S, {Λn}4n=1

)
=

1

2
‖Xl−1 −GTH‖2F +

η

2
tr(ΘlXl−1LXT

l−1Θ
T
l ) + ΛT

1 (H−ΘlXl−1)

+ ΛT
2 (G−Θl) + ΛT

3 (Q−ΘlXl−1) + ΛT
4 (S−ΘlXl−1) +

µ

2
‖H−ΘlXl−1‖2F

+
µ

2
‖G−Θl‖2F +

µ

2
‖Q−ΘlXl−1‖2F +

µ

2
‖S−ΘlXl−1‖2F + l+R(Q) + l∼R(S),

(13)
where {Λn}4n=1 are Lagrange multipliers and µ is the penalty parameter. The two
terms l+R(•) and l∼R(•) represent two kinds of projection operators, respectively.
That is, l+R(•) is defined as

max(•) =

{
• , • � 0

0 , • � 0,
(14)

while l∼R(•k) is a vector-based operator defined by

proxf (•k) =

{
•k
‖•k‖2 , ‖•k‖2 � 1

•k , ‖•k‖2 � 1,
(15)

where •k is the kth column of matrix •. Algorithm 2 details the procedures of
AutoRULe.

The two subproblems in Algorithm 1 can be optimized alternatively as
follows:

Optimization with respect to P: This is a typical least square regression prob-
lem, which can be written as

min
P

α

2
E(P) +

γ

2
Ψ(P) =

α

2
‖Y −PΘm...Θl...Θ1X‖2F +

γ

2
‖P‖2F, (16)

which has a closed-form solution

P← (αYVT)(αVVT + γI)−1, (17)

where V = Θm...Θl...Θ1,∀l = 1, ...,m.

Optimization with respect to {Θl}ml=1: The variables {Θl}ml=1 can be individ-
ually optimized, and hence the optimization problem of each Θl can be generally
formulated by

min
Θl

1

2
Υ(Θl) +

α

2
E(Θl) +

β

2
Φ(Θl) =

1

2
‖Xl−1 −ΘT

l ΘlXl−1‖2F

+
α

2
‖Y −PΘm...Θl...Θ1X‖2F +

β

2
tr(ΘlXl−1LXT

l−1Θ
T
l )

s.t. Xl = ΘlXl−1, Xl � 0, ‖xlk‖2 � 1,

(18)
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Algorithm 2: Auto-reconstructing unsupervised learning (AutoRULe)

Input: Xl−1,Θ
0
l ,L, and parameters η and maxIter.

Output: Θl.
1 Initialization: H0 = Θ0

l Xl−1,G
0 = 0,Q0 = P0 = 0,Λ0

2 = 0,Λ0
1 = Λ0

3 = Λ0
4 = 0, µ0 =

1e− 3, µmax = 1e6, ρ = 2, ε = 1e− 6, t = 0.
2 while not converged or t > maxIter do
3 Fix Ht,Gt,Qt,Pt to update Θt+1

l by

Θl =(µHX
T
l−1 + Λ1X

T
l−1 + µG + Λ2 + µQX

T
l−1 + Λ3X

T
l−1

+ µPX
T
l−1 + Λ4X

T
l−1)(η(Xl−1LX

T
l−1) + 3µ(Xl−1X

T
l−1) + µI)

−1
.

4 Fix Θt+1
l ,Gt,Qt,Pt to update Ht+1 by

H = (GG
T

+ µI)
−1

(GXl−1 + µΘlXl−1 −Λ1).

5 Fix Ht+1,Θt+1
l ,Qt,Pt to update Gt+1 by

G = (HH
T

+ µI)
−1

(HXi + µΘl −Λ2).

6 Fix Ht+1,Gt+1,Θt+1
l ,Pt to update Qt+1 by

Q = max(ΘlXl−1 −Λ3/µ, 0).

7 Fix Ht+1,Gt+1,Θt+1
l ,Qt+1 to update Pt+1 by

P = proxf (ΘlXl−1 −Λ4/µ).
8 Update Lagrange multipliers by

Λ
t+1
1 = Λ

t
1 + µ

t
(H

t+1 −Θ
t+1
i Xl−1),Λ

t+1
2 = Λ

t
2 + µ

t
(G

t+1 −Θ
t+1
i ),

Λ
t+1
3 = Λ

t
3 + µ

t
(Q

t+1 −Θ
t+1
i Xl−1),Λ

t+1
4 = Λ

t
4 + µ

t
(P

t+1 −Θ
t+1
i Xl−1).

9 Update penalty parameter by

µ
t+1

= min(ρµ
t
, µmax).

10 Check the convergence conditions: if ‖Ht+1 −Θt+1
l Xl−1‖F < ε and

‖Gt+1 −Θt+1
l ‖F < ε and ‖Qt+1 −Θt+1

l Xl−1‖F < ε and ‖Pt+1 −Θt+1
l Xl−1‖F < ε

then
11 Stop iteration;
12 else
13 t← t+ 1;
14 end
15 end

which can be basically deduced by following the framework of Algorithm 2.
The only difference lies in the optimization subproblem with respect to H whose
solution can be collected by solving the following problem:

min
H

1

2
‖Xl−1 −GTH‖2F +

α

2
‖Y −PlH‖2F + ΛT

1 (H−ΘlXl−1)

+
µ

2
‖H−ΘlXl−1‖2F s.t. Pl = Pl−1Θl+1, P0 = P.

(19)

The analytical solution of Eq. (19) is given by

H← (αPT
l Pl + GGT + µI)−1(αPT

l Y + GXl−1 + µΘlXl−1 −Λ1). (20)

Finally, we repeat these optimization procedures until a stopping criterion is
satisfied. Please refer to Algorithm 1 and Algorithm 2 for more explicit steps.

3 Experiments

In this section, we conduct the classification to quantitatively evaluate the per-
formance of the proposed method (J-Play) using three popular and advanced
classifiers, namely the nearest neighbor (NN) based on the Euclidean distance,
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kernel support vector machines (KSVM) and canonical correlation forest (CCF),
in comparison with previous state-of-the-art methods. Overall accuracy (OA) is
given to quantify the classification performance.

3.1 Data Description

The experiments are performed on two different types of datasets: hyperspectral
datasets and face datasets, as both of them easily suffer from the information
redundancy and need to improve the representative ability of features. We have
used the following two hyperspectral datasets and two face datasets:

1) Indian Pines AVIRIS Image: The first hyperspectral cube was acquired
by the AVIRIS sensor with the size of 145 × 145 × 220, which consists of 16
class of vegetation. More specific classes and the arrangement of training and
test samples can be found in [25]. The first image of Fig. 3 shows a false color
image of Indian Pines data.

2) University of Houston Image: The second hyperspectral cube was provided
for the 2013 IEEE GRSS data fusion contest acquired by ITRES-CASI sensor
with size of 349×1905×144. The information regarding classes and corresponding
train and test samples can be found in [5]. A false color image of the study scene
is shown in the first image of Fig. 4.

3) Extended Yale-B Dataset: We only choose a subset of the mentioned
dataset with the frontal pose and the different illuminations of 38 subjects (2414
images in total), which can widely used in evaluating the performance of sub-
space learning [26][27]. These images were aligned and cropped to the size of
32 × 32, that is, 1024-dimensional vector-based representation. Each individual
has 64 near frontal images under different illuminations.

4) AR Dataset: Similar to [28], we choose a subset of AR under the conditions
of illumination and expressions, which comprises of 100 subjects. Each person
has 14 images with seven ones from Session 1 as training set and others from
Session 2 as testing samples. The images are resized to 60× 43.

3.2 Experimental Steup

As the fixed training and testing samples are given for the hyperspectral datasets,
subspace learning techniques can directly be performed on training set to learn
an optimal subspace where the testing set can be simply classified by NN, KSVM,
and CCF. For the face datasets, since there is no standard training and testing
sets, ten replications are performed for randomly selecting training and testing
samples. A random subset with 10 facial images per individual is chosen with
labels as the training set and the rest of it is considered to be the testing set.
Furthermore, we compare the performance of the proposed method (J-Play)
with the baseline (original features without dimensionality reduction) and six
popular and advanced methods (PCA, LPP, LDA, LFDA, LSDR, and LSQMID).
With learning the different number of coupled projections, the proposed method
can be successively specified as J-Play1,...,J-Playl,...,J-Playm, ∀l = 1, ...,m. To
investigate the trend of OAs, m are uniformly set up to 7 on the four datasets.
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CornNotill CornMintill Corn GrassPature GrassTrees HayWindrow SoybeanNotil SoybeanMintill SoybeanClean Wheat Woods BuilGraTrDri StoSteTower Alfalfa GrasPastMow Oats

FalseColor GroundTruth Baseline PCA LPP LDA LFDA LSDR LSQMID J-Play

Fig. 3. A false color image, ground truth and classification maps of the different algo-
rithms obtained using CCF on the Indian Pines dataset.

Healthy Grass

Stressed Grass

Synthetic Grass

Trees

Soil

Water

Residential

Commercial

Road

Highway

Railway

Parking Lot1

Parking Lot2

Tennis Court

Running Track

FalseColor GroundTruth Baseline PCA LPP LDA LFDA LSDR LSQMID J-Play

Fig. 4. A false color image, ground truth and classification maps of the different algo-
rithms obtained using CCF on the Houston dataset.

3.3 Results of Hyperspectral Data

Initially, we conduct a 10-fold cross-validation for the different algorithms on
the training set in order to estimate the optimal parameters which can be se-
lected from {10−2, 10−1, 100, 101, 102}. Table 1 lists classification performances
of the different methods with the optimal subspace dimensions obtained by
cross-validation using three different classifiers. Correspondingly, the classifica-
tion maps are given in Figs. 3 and 4 to intuitively highlight the difference.

Overall, PCA performs basically similar performance with the baseline using
the three different classifiers on the two datasets. For LPP, due to its sensitivity
to noise, it yields a poor performance on the first dataset, while on the relatively
high-quality second dataset, LPP steadily outperforms the baseline and PCA.
In the supervised algorithms, owing to the limitation of training samples and
discriminative power, the classification accuracies of classic LDA is holistically
lower than those previously mentioned. With a more powerful discriminative
criterion, LFDA obtains more competitive results by locally focusing on dis-
criminative information, which are generally better than those of the baseline,
PCA, LPP, and LDA. However, the features learned by LFDA is sensitive to
noise and the number of neighbors, resulting in the unstable performance par-
ticularly for the different classifiers. For LSDR and LSQMID, they aim to find a
linear projection by maximizing the mutual information between input and out-
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Table 1. Quantitative performance comparisons on two hyperspectral datasets. The

best results for the different classifiers are shown in red.

Methods
Indian Pines dataset Houston dataset

NN KSVM CCF NN KSVM CCF

Baseline (220/144) 65.89% 66.56% 81.71% 72.78% 80.19% 83.06%

PCA (20/20) 65.99% 77.73% 77.95% 72.75% 79.54% 83.17%

LPP (20/30) 64.86% 63.02% 68.75% 75.31% 80.86% 83.23%

LDA (15/14) 64.66% 62.71% 66.34% 75.81% 76.66% 79.51%

LFDA (15/14) 72.47% 72.48% 75.34% 72.95% 82.02% 82.64%

LSDR (50/40) 73.67% 76.84% 77.38% 76.80% 80.39% 81.64%

LSQMID (60/80) 66.94% 78.90% 79.32% 76.31% 80.23% 81.69%

J-Play1 (20/30) 78.81% 82.04% 82.42% 78.22% 83.32% 85.32%

J-Play2 (20/30) 80.87% 83.75% 83.83% 79.16% 84.41% 86.75%

J-Play3 (20/30) 83.59% 85.08% 84.52% 80.13% 83.68% 88.11%

J-Play4 (20/30) 83.92% 85.21% 84.92% 79.64% 83.25% 85.64%

J-Play5 (20/30) 83.76% 85.30% 84.71% 80.00% 82.21% 85.19%

J-Play6 (20/30) 83.56% 84.79% 83.68% 79.69% 82.45% 84.60%

J-Play7 (20/30) 82.70% 83.82% 83.04% 77.81% 81.03% 84.05%

put from the view of statistics. With fully considering the mutual information,
they achieve the good performance on the two given hyperspectral datasets.

Remarkably, the performance of the proposed method (J-Play) is superior to
the other methods on the two hyperspectral datasets. This indicates that J-Play
is prone to learn a better feature representation and robust against noise. On the
other hand, with the increase of m, the performance of J-Play steadily increases
to the best with around 4 or 5 layers for the first dataset and 2 or 3 layers for
the second one, and then gradually decreases with a slight perturbation since
our model is only trained on the training set.

3.4 Results of Face Images

As J-Play is proposed as a general subspace learning framework for multi-label
classiciation, we additionally used two popular face datasets to further assess its
generalization capability. Similarly, cross-validation on training set is conducted
for estimating the optimal parameter combination on the extended Yale-B and
AR datasets. Considering the high-dimensional vector-based face images, we
first perform the PCA for face images in order to roughly reduce the feature
redundancy, whose results are further explored to the dimensionality reduction
methods by following the previous work on face recognition (e.g. LDA (Fisher-
faces) [1] and LPP (Laplacianfaces) [2]). Table 2 gives the corresponding OAs
using the different methods on the two face datasets respectively.

By comparison, the performance of PCA and LPP is steadily superior to
that of baseline, while PCA is even better than LPP. For supervised approaches,
LDA performs better than baseline, PCA, LPP and even LFDA, showing an
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(a) Extended Yale-B dataset (b) AR dataset

Fig. 5. Visualization of partial facial features learned by the proposed J-Play on two
face datasets.

Table 2. Quantitative performance comparisons on two face datasets. The best results

for the different classifiers are shown in red.

Methods
Extended Yale-B dataset AR dataset

NN KSVM CCF NN KSVM CCF

Baseline (1024/2580) 45.77% 45.87% 76.99% 71.71% 72.29% 80.29%

PCA (120/80) 41.05% 81.47% 83.53% 68.43% 80.29% 81.43%

LPP (170/70) 70.75% 76.55% 77.48% 70.86% 74.00% 79.86%

LDA (37/99) 80.88% 78.37% 83.68% 81.43% 82.29% 85.38%

LFDA (37/99) 81.02% 80.88% 83.58% 71.29% 75.71% 80.38%

LSDR (60/80) 71.29% 76.40% 78.66% 75.14% 79.00% 80.14%

LSQMID (60/80) 71.48% 77.09% 78.37% 73.29% 74.29% 79.29%

J-Play1 (170/210) 73.01% 79.30% 80.29% 73.57% 79.86% 77.86%

J-Play2 (170/210) 81.17% 84.27% 85.22% 82.29% 86.00% 84.57%

J-Play3 (170/210) 83.43% 85.50% 85.76% 85.43% 88.71% 87.43%

J-Play4 (170/210) 84.07% 86.09% 86.55% 85.29% 87.71% 87.71%

J-Play5 (170/210) 84.56% 86.14% 86.20% 85.71% 87.29% 88.86%

J-Play6 (170/210) 85.35% 85.64% 86.53% 85.14% 87.29% 88.29%

J-Play7 (170/210) 85.74% 85.45% 86.20% 86.57% 86.86% 88.71%

impressive result. Due to the less number of training samples from face datasets,
LSDR and LSQMID are limited to effectively estimate the mutual information
between the training samples and labels, resulting in the performance degra-
dation compared to the hyperspectral data. The proposed method outperforms
other algorithms, which indicates that this method can effectively learn an op-
timal mapping from original space to label space, further improving the classifi-
cation accuracy. Likewise, there is a similar trend for the proposed method with
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the increase of m that J-Play can basically obtain the optimal OAs with around
4 or 5 layers and more layers would lead to the performance degradation. We
also characterize and visualize each column of the learned projection, as shown
in Fig. 5 where those high-level or semantically meaningful features, i.e. face
features under the different pose and illumination, can be learned well, making
the faces identified easier.

4 Conclusions

To effectively find an optimal subspace where the samples can be semantically
represented and thereby be better classified or recognized, we proposed a novel
linearized subspace learning framework (J-Play) which aims at learning the fea-
ture representation from the high-dimensional data in a joint and progressive
way. Extensive experiments of multi-label classification are conducted on two
types of datasets: hyperspectral images and face images, in comparison with
some previously proposed state-of-the-art methods. The promising results using
J-Play demonstrate its superiority and effectiveness. In the future, we will further
build an unified framework based on J-Play by extending it to semi-supervised
learning, transfer learning, or multi-task learning.
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