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Abstract—To support high-level analysis of spaceborne imaging
spectroscopy (hyperspectral) imagery, spectral unmixing has
been gaining significance in recent years. However, from the
inevitable spectral variability, caused by illumination and topog-
raphy change, atmospheric effects and so on, makes it difficult
to accurately estimate abundance maps in spectral unmixing.
Classical unmixing methods, e.g. linear mixing model (LMM),
extended linear mixing model (ELMM), fail to robustly handle
this issue, particularly facing complex spectral variability. To
this end, we propose a subspace-based unmixing model using
low-rank learning strategy, called subspace unmixing with low-
rank attribute embedding (SULoRA), robustly against spectral
variability in inverse problems of hyperspectral unmixing. Unlike
those previous approaches that unmix the spectral signatures
directly in original space, SULoRA is a general subspace un-
mixing framework that jointly estimates subspace projections
and abundance maps in order to find a raw subspace which
is more suitable for carrying out the unmixing procedure.
More importantly, we model such raw subspace with low-rank
attribute embedding. By projecting the original data into a low-
rank subspace, SULoRA can effectively address various spectral
variabilities in spectral unmixing. Furthermore, we adopt an
alternating direction method of multipliers (ADMM) based to
solve the resulting optimization problem. Extensive experiments
on synthetic and real datasets are performed to demonstrate
the superiority and effectiveness of the proposed method in
comparison with previous state-of-the-art methods.

Index Terms—Alternating direction method of multipliers, hy-
perspectral data analysis, low-rank attribute embedding, remote
sensing, subspace unmixing, spectral variability.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is characterized by
very rich spectral information, which enables us to

detect targets of interest and identify unknown materials more
easily. Motivated by this, considerable attentions have been
paid to hyperspectral data processing and analysis, such as
dimensionality reduction [1][2], image segmentation [3], land-
cover and land-use classification [4], and target detection [5]
and so on. However, most of pixels in HSI suffer from the
effect of spectral mixing due to a lower spatial-resolution
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than that of traditional RGB or multispectral imagery. These
material mixtures inevitably degrade the spectrally discrim-
inative ability, particularly in some high-level applications.
To overcome this, spectral unmixing is defined as that de-
composes the reference spectral signatures into a collection
of spectral signatures of pure materials (or endmembers) and
their abundance fractions (or abundance maps). In remote
sensing community, spectral unmixing techniques have been
widely and successfully applied to a variety of tasks, including
mineral exploration and identification [6], forest monitoring
[7].

Assuming the absent of any spectral, spatial, and temporal
variabilities as well as microscopic interaction (e.g. multiple
scatting, intimate mixing, etc.) between the materials are neg-
ligible, then the mixed spectrum of each pixel in the HSI scene
is approximately measured by a linear mixing model (LMM)
[8]. There is, however, a main factor - spectral variability,
propagating unpredictable errors to LMM. This further yields
an inaccurate unmixing process, since these errors are basically
absorbed by endmembers and abundance maps. Nonlinearity,
i.e. nonlinearly mixing spectral signatures, resulting from, e.g.
multiple scattering and intimate mixing, is one of the main
causes of spectral variability. In addition, varying acquisition
conditions (e.g. illumination, topography, atmospheric effects)
as well as physically and chemically intrinsic change of the
material possibly speed up spectral degradation, which can be
seen as another kind of spectral variability.

Recently, enormous efforts modeling errors either from
statistics-based or regression-based point of view have been
made to address the spectral variability [9]. Two mainstream
statistical methods, namely the normal composition model [10]
and the beta compositional model [11], assume the endmember
spectra following a given probability distribution. On the
other hand, inspired by LMM - the regression-based seminal
work, and its variations have been successively proposed to
deterministically model the spectral variability. A perturbed
linear mixing model (PLMM) was proposed in [12] to fit the
spectral variability using a Gaussian prior with each endmem-
ber. Similarly, Fu et al. designed a dictionary-adjusted noncon-
vex sparsity-encouraging regression (DANSER) by modeling
the mismatch between the spectral library and the observed
spectrum under a Gaussian distribution [13]. Although these
approaches attempt to model the spectral variability in a
general way, only a given explicit distribution, i.e. Gaussian,
is still insufficient. In most hyperspectral scenes, the spectral
signature is frequently scaled due to illumination or topologi-
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cal change, hence the scaling factor, as a principal variability,
is quite coherent with the corresponding spectral signature.
Such attributed spectral variability is hardly represented by a
Gaussian-guided term. Drumetz et al. proposed an extended
LMM (ELMM) [14] by modeling the different scaling factors
on each endmember, but is a significant shortcoming in that
other spectral variabilities are not be involved correspondingly.

While aforementioned unmixing algorithms have been suc-
cessively proposed and successfully applied to some specific
datasets, the ability of robustness and generalization in han-
dling various spectral variabilities still remains limited. For this
reason, we propose a robust subspace-based unmixing method
by jointly performing subspace learning and unmixing in a
closed-loop. With low-rank attribute embedding, the spectral
variability can be effectively removed in the learnt low-
rank subspace, achieving a robust spectral unmixing. More
specifically, our contributions can be unfolded as follows:

• We propose a general subspace-based unmixing frame-
work by jointly low-rank subspace learning and unmix-
ing, called subspace unmixing with low-rank attribute
embedding (SULoRA), to achieve a robust unmixing in
a proper subspace rather than in the original space. More-
over, mostly linear unmixing models can be considered
as special cases in this general framework.

• With the low-rank attribute embedding, the proposed
SULoRA can broadly mitigate the effects of various
spectral variabilities by projecting the original data into
a more representative low-rank subspace.

• An alternating direction method of multipliers (ADMM)
is adopted to solve the resulting optimization problem.

The remainder of this paper is organized as follows. Section
II briefly summarizes the related work in spectral unmixing
and analyzes their advantages and disadvantages. In Section
III, we first clarify the motivation and then propose our
methodology of the SULoRA model as well as corresponding
ADMM-based optimization algorithm. Section IV presents the
experimental results on two different datasets (a synthetic
data and a real urban data) and gives the intuitive analysis
and discussion both qualitatively and quantitatively. Finally,
Section V concludes with a summary.

II. RELATED WORK

In this section, we review state-of-arts unmixing algorithms,
emphatically introducing LMM-based unmixing models and
its variations including fully constrained least squares unmix-
ing (FCLSU) [15], partial constrained least squares unmixing
(PCLSU) [16], sparse unmixing by variable splitting and
augmented Lagrangian (SUnSAL) [17], as well as their scaled
versions (scaled partial constrained least squares unmixing
(SPCLSU) [18] and scaled sparse unmixing by variable split-
ting and augmented Lagrangian (SSUnSAL) [19]), ELMM and
PLMM.

A. LMM

Let Y = [y1, ...,yi, ...,yN ] ∈ RD×N be an unfolded
HSI with D bands and N pixels, and A = [a1, ...,aP ] ∈
RD×P be the endmembers with the size of D × P . X =

[x1, ...,xi, ...,xN ] ∈ RP×N is denoted as abundance maps,
whose each column vector stands for the fractional abundance
at each pixel. R = [r1, ..., ri, ..., rN ] ∈ RD×N is the residual
(e.g. noise, modeling errors and others) in the form of matrix.
Under an ideal condition without any external disturbance,
the spectral measurement for a given pixel, denoted by yi ∈
RD×1, is well approximated by a set of linear combination of
endmember spectra weighted by theri corresponding fractional
abundances, resulting in the LMM:

yi = Axi + ri, (1)

where ai and xi should be non-negative in order to meet the
physical conditions in reality. Moreover, the fractional abun-
dance xi, as the name indicated, represents the proportions
occupied by the different endmembers. This means xi should
be also subject to a sum-to-one constraint. Therefore, Eq. (1)
with the necessary constraints is expressed as

yi = Axi + ri, s.t. A � 0, xi � 0,

N∑
i=1

xi = 1. (2)

Collecting all pixels, a compact matrix form of Eq. (2) can be
written as

Y = AX + R, s.t. A � 0, X � 0, 1TX = 1. (3)

In the following, we will detail several popular unmixing
algorithms based on LMM:

1) FCLSU: In practice, the endmembers (A) can be pre-
extracted from the given scene using endmember extraction
methods, i.e. pixel purity index (PPI), vertex component
analysis (VCA) [20]. This renders us to more effectively and
conveniently estimate the abundance maps (X) by degrading
the Eq. (3) to least-square regression problem, leading to
FCLSU:

min
X

{
1

2
‖Y −AX‖2F s.t. X � 0, 1TX = 1.

}
. (4)

Considering the presence of spectral variability, FCLSU
yields a poor performance. It mainly derives from the strong
sum-to-constraint, as explained in [8]. A common way to this
issue is to relax the abundance fractions sum to less or larger
than one or to consider a part of full constraints.

2) PCLSU: Following the above solution, the resulting
PCLSU can be formulated by solving

min
X

{
1

2
‖Y −AX‖2F s.t. X � 0.

}
. (5)

The estimated variable X in Eq. (5) might be any scales,
owing to a badly-conditioned observed matrix Y. To alleviate
the effects of the ill-posed problem, meaningfully physical
assumptions have to be added in the form of regularization.

3) SUnSAL: As observed, the abundances on each end-
member are theoretically supposed to be sparse. Bioucas-
Dias et al. embedded this property into LMM and achieved
a powerful SUnSAL algorithm. The resulting optimization
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problem can be written as follows

min
X

{
1

2
‖Y −AX‖2F + α‖X‖1,1 s.t. X � 0, 1TX = 1.

}
,

(6)
where ‖X‖1,1 ≡

∑N
k=1‖xk‖1 is denoted as an approximation

of sparsity-promoting term.
In view of effectiveness of SUnSAL, SUnSAL’s variations

have been subsequently proposed in recent years, such as
SUnSAL with total variation spatial regularization (SUnSAL-
TV) [21], collaborative sparse regression (CLSUnSAL) [22],
etc. We have to admit, however, that these advanced methods
are still subject to the framework of LMM that is sensitive to
spectral variabilities.

B. ELMM

ELMM aims to modeling the principle spectral variability
(scaling factors) to allow a pixel-wise variation at each end-
member:

yi = ASixi + ri, (7)

where Si ∈ RP×P is a diagonal matrix with the nonnegative
constraint (Si � 0). A matrix form of Eq. (7) can be repented
as

Y = A(S�X) + R, (8)

here S ∈ RP×N is a full matrix collecting the scaling factors
from all pixels whose ith column is Si. The operator � is
denoted as the Schur-Hadamard (termwise) product.

1) Unmixing under the ELMM: Intuitively, the optimization
problems in (7) and (8) are hardly to be analytically solved.
In [14], a trick is employed by splitting the coupled variables
(S and X), then we have

min
X,S�0,A

{
N∑
k=1

(‖yk −Akxk‖22 + λS‖Ak −A0Sk‖2F)

}
,

(9)
where A0 is the reference endmember spectrum, A = {Ai} is
a collection of pixel-dependent endmember matrices, and λS
plays a balance role between the two separated terms. Eq.(9)
can be alternatively optimized with respect to each variable
by alternating minimization strategy [23].

2) SPCLSU: Prior to ELMM, scaling factors have been
investigated in a simple way, that is SPCLSU [18] in which
endmembers are reasonably assumed by sharing a same scale
as the scaling factors are strongly associated with topography.
SPCLSU actually conducts a PCLSU in the beginning, and
then normalizes the abundance maps to meet sum-to-one. This
is a simple but effective strategy, which is also involved in our
proposed method.

C. PLMM

As the name suggested, PLMM attempts to describe the
spectral variability as an additive perturbation information.
Both the pixel-wise and the corresponding matrix form of
PLMM can be expressed, respectively

yi = (A + ∆i)xi + ri, (10)

and

Y = AX + [∆1x1|...|∆ixi|...|∆NxN ]︸ ︷︷ ︸
∆

+R,
(11)

where ∆ is [∆1x1|...|∆ixi|...|∆NxN ] denotes the perturba-
tion information of the endmembers.

1) Unmixing under the PLMM: The optimization problem
corresponding to PLMM-based unmixing can be given as

min
A,∆,X


1

2
‖Y −AX−∆‖2F + αΦ(X) + βΨ(A)

+ γΥ(∆)

 , (12)

where Φ, Ψ, and Υ parameterized by α, β, and γ, are
penalties with respect to variables X, A, and ∆, receptively.
Notably, Υ term is modeled by a Frobenius norm.

2) DANSER: Likewise being generalized to PLMM frame-
work, DANSER adopts a sparsity-encouraging regression
technique for a dictionary-based spectral unmixing, where a
perturbation-like information is explored to measure the mis-
match between spectral dictionary and observed endmembers.
This model, the DANSER, is formulated by

min
A′ ,X


1

2
‖Y −A

′
X‖2F + α‖A

′
−A‖2F + β‖X‖p2,p

s.t. X � 0

 , (13)

where A
′

is a corrupted endmember matrix obtained by
perturbing A.

Although the aforementioned methods have shown an ad-
vancement in treating the spectral variability, especially facing
main spectral variabilities (e.g. scaling factors), they are still
lack of robustness and generalization to others that we are
unknown. Jump out of this circle, a new insight is provided
into this problem that we propose to conduct the spectral
unmixing in a robust subspace instead of directly unmixing
in original spectral space. Please go to next section for more
details.

III. SUBSPACE UNMIXING WITH LOW-RANK ATTRIBUTE
EMBEDDING

A. General Motivation

There is a trade-off between spectral information gain and
the spectral variability. On one hand, spectrum are expected
to be spectrally discriminative. Conversely, this means that
more complex spectral variabilities might get involved in
hyperspectral data. A feasible solution to this issue is spectral
unmixing in a ‘raw’ subspace rather than in the original
space. In the learnt subspace, the pixels belonging to the
same class are expected to be strongly correlated by using
a low-rank attribute embedding. Further, this process can be
mathematically modeled as

Y = Y
′
+ R

′
, s.t. Y

′
= ΘY,

Y
′

= ΘAX + R
′′
,

(14)

where Θ denotes the low-rank subspace projections, and Y
′

is the spectrally subspace representation after embedding the
low-rank attribute.
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Fig. 1. A comparison of the holistic workflow between the original-space-based method and the proposed SULoRA.

Fig. 1 shows a comparison in holistic workflow of spectral
unmixing between using the original-space-based and the
subspace-based (SULoRA) approaches.

B. Low-Rank Attribute Embedding

Inspired by [24] in which a novel strategy of low-rank
attribute embedding is proposed with the application to person
re-identification, we further improve this term by integrating
our general motivation described above, making it more ap-
plicable to hyperspectral unmixing task.

Step by step, we will clarify the motivation of using the low-
rank attribute embedding in great detail. It is well-known that
hyperspectral imagery inevitably suffers from various spectral
variabilities in the process of imaging. These spectral vari-
abilities, which are generated due to illumination conditions,
topography change, atmospheric effects, and material nonlin-
ear mixing, are complex and even hardly represented using a
common model. Instead of directly modeling such changeable
property, we hypothetically treat the spectral variability as
an unknown complex noise. Therefore, modeling the complex
spectral variability could be converted to a special denoising
problem. Noises in the data can be generally removed through
a projection transformation. During this process, one is ex-
pected to be the projected or denoised data as close as possible
with the original data, resulting in a mathematical expression
(Y .

= ΘY). Besides, we also expect to structurally main-
tain consistency between noisy data (Y) and processed data
(ΘY), which might be achieved by correlative or collaborative
filtering in order to emphasize the correlation and structural

property between the samples. Low-rank representation has
been widely and successfully applied for modeling the sample-
based correlation [25][26][27], hence the estimated projection
Θ can be naturally endowed with a low-rank attribute (e.g.,
rank(Θ) � C) in our case.

C. Problem Formulation

As introduced in Subsection III-A, our proposed SULoRA
shown in Eq. (14) can be formulated as a following constrained
optimization problem

min
X,Θ


1

2
‖Θ(Y −AX)‖2F + Φ(Θ) + Υ(X)

s.t. X � 0

 , (15)

which aims at estimating the variables with respect to X and
Θ. Since the problem (15) is undetermined, the variables X
and Θ should be regularized by reasonable prior knowledge.
The two regularization terms Φ(Θ) and Υ(X) are described
below.

1) Subspace Regularization Φ(Θ): According to the dis-
cussion and analysis in Section III. B, the subspace projections
Θ are characterized by a low-rank attribute in order to transfer
the original hyperspectral data into a robust subspace, which
can be approximately formulated by the form of ‖Θ‖∗. Essen-
tially, the main difference between those previously proposed
low-rank representation learning and the proposed SULoRA
lies in the motive. More specifically, the former ones usually
aim to robust clustering in subspace [25][27] that needs to
estimate the connectivity between samples, while our goal is to
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Algorithm 1: Subspace Unmixing with Low-Rank At-
tribute Embedding (SULoRA)

Input: Y, A, X0, α, β, γ, maxIter.
Output: X, Θ.

1 Initialization: G = 0, H = 0, J = 0, Λ1 = 0, Λ2 = 0,
Λ3 = 0, µ = 10−3, µm = 106, ρ = 1.5, ε = 10−6,
t = 1.

2 while not converged or t > maxIter do
3 Fix other variables to update Θ by

Θ =(αYYT + µG + Λ1)

× (αYYT + (Y −AX)(Y −AX)T + µI)−1.

4 Fix other variables to update X by

X =((ΘA)T(ΘA) + 2µI)−1

× ((ΘA)TΘY + µH + Λ2 + µJ + Λ3).

5 Fix other variables to update G by

[U,S,V] = svd(Θ−Λ1/µ), S = diag({sk}rk=1)

G = USτV, Sτ = diag(max{0, sk − β/µ}).

6 Fix other variables to update H by

H = max{0, |X−Λ2/µ| − γ/µ} � sign(X−Λ2/µ).

7 Fix other variables to update J by

J = max{0,X−Λ3/µ}.

8 Update Lagrange multipliers by

Λ1 ← Λ1+µ(G−Θ), Λ2 ← Λ2 + µ(H−X)

Λ3 ← Λ3 + µ(J−X).

9 Update penalty parameter by

µ = min(ρµ, µm).

10 Check the convergence conditions: if ‖G−Θ‖F < ε
and ‖G−X‖F < ε and ‖J−X‖F < ε then

11 Stop iteration;
12 else
13 t← t+ 1;
14 end
15 end

find or learn a low-rank subspace projection so that the learned
projection can play a correlative filtering-like role robustly
against various spectral variabilities, which is computationally
efficient. Besides, we also hope to structurally maintain the
spectral properties, making the learnt subspace as close as
possible with the original space. This second prior can be
formed by ‖Y − ΘY‖F . The final resulting expression of
regularization with respect to Θ is

Φ(Θ) =
α

2
‖Y −ΘY‖2F + β‖Θ‖∗, (16)

where α and β are the corresponding penalty parameters.
2) Abundance Regularization Υ(X): For a given hyper-

spectral scene, the spectral signature consists of limited kinds
of materials, hence the abundances should be encouraged to

be sparse. This term parameterized by γ can be expressed by

Υ(X) = γ‖X‖1,1. (17)

In our model, the non-negativity constraint (X � 0) has to
be considered to satisfy the physical assumption. It should be
noted, however, that the sum-to-one constraint is not directly
considered in our optimization problem (Eq. (15)), since
the hard constraint is too strong to yield a badly-estimated
abundance maps. We adopt the same technique in SPCLSU
[18] to force X to follow the sum-to-one constraint.

Different with matrix factorization-based unmixing ap-
proaches that simultaneously estimate the endmembers and the
abundance maps, the proposed SULoRA first determines the
number of endmembers via HySime [28], and then separately
extracts the endmembers from the HSI scene with VCA and
estimates the abundance maps. The benefits of the scheme
in our model are two-fold. On one hand, the endmembers
extracted from the data tend to preserve, to the greatest ex-
tent, spectrally physical significance, and thereby improve the
stability of estimating the abundance maps. On the other hand,
it effectively simplifies the model’s complexity by optimizing
fewer variables, finding a good solution easier.

D. Model Optimization Using ADMM-based Algorithm

The optimization problem shown in Eq. (15) is convex, we
adopt an ADMM-based optimization algorithm [29][30][31]
for a fast and efficient solution. To facilitate the use of ADMM,
we first convert Eq. (15) to an equivalent form introducing
multiple auxiliary variables G, H, and J to replace Θ, X,
and X, respectively.

min
X,Θ,G,H,J


1

2
‖Θ(Y −AX)‖2F +

α

2
‖Y −ΘY‖2F

+ β‖G‖∗ + γ‖H‖1,1 + l+R(J)

s.t. Θ = G, X = H, X = J

 , (18)

where ()+ denotes an operator that intercepts the positive part
of each component of the matrix, and l+R(J) is defined as
J � 0. This problem can be equivalently solved by minimizing
the following augmented Lagrangian function:

LU (X,Θ,G,H,J,Λ1,Λ2,Λ3) =
1

2
‖Θ(Y −AX)‖2F

+
α

2
‖Y −ΘY‖2F + β‖G‖∗ + γ‖H‖1,1 + l+R(J)

+ ΛT
1 (G−Θ) + ΛT

2 (H−X) + ΛT
3 (J−X)

+
µ

2
‖G−Θ‖2F +

µ

2
‖H−X‖2F +

µ

2
‖J−X‖2F,

(19)

where {Λi}3i=1 are Lagrange multipliers and µ is the penalty
parameter. The specific optimization flow for solving the
problem (19) is summarized in Algorithm 1, and the solution
to each subproblem is detailed in the following.

We successively minimize LU with respect to the variables
Θ, X, G, H, and J as well as Lagrange multipliers {Λi}3i=1

as follows:
Optimization with respect to Θ: The optimization problem
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for Θ is

min
Θ


1

2
‖Θ(Y −AX)‖2F +

α

2
‖Y −ΘY‖2F

+ ΛT
1 (G−Θ) +

µ

2
‖G−Θ‖2F

 , (20)

which has an analytical solution of

Θ←(αYYT + µG + Λ1)

× (αYYT + (Y −AX)(Y −AX)T + µI)−1.
(21)

Optimization with respect to X: For X, the optimization
problem can be expressed as

min
X


1

2
‖Θ(Y −AX)‖2F + ΛT

2 (H−X) + ΛT
3 (J−X)

+
µ

2
‖H−X‖2F +

µ

2
‖J−X‖2F

 ,

(22)
whose a closed-form solution is

X←((ΘA)T(ΘA) + 2µI)−1

× ((ΘA)TΘY + µH + Λ2 + µJ + Λ3).
(23)

Optimization with respect to G: The objective function for
G is written as

min
G

{
β‖G‖∗ + ΛT

1 (G−Θ) +
µ

2
‖G−Θ‖2F

}
, (24)

which is solved via the Singular Value Thresholding (SVT)
operator [32]:

• Step 1. Input a matrix M of rank r and consider the
singular value decomposition (SVD):

M = USV, S = diag({sk}1≤k≤r). (25)

• Step 2. For each τ ≥ 0, we define the soft-thresholding
operator Dτ as follows

D(M) := UDτ (S)V, Dτ (S) = diag({sk − τ}+).
(26)

Using Eq. 26, ‖M‖∗ can be computed by ‖Dτ (S)‖1,1.
Optimization with respect to H: The optimization problem

of H is

min
H

{
γ‖H‖1,1 + ΛT

2 (H−X) +
µ

2
‖H−X‖2F

}
, (27)

its solution is nothing but a well-known soft threshold [17]:

H← max{0, |X−Λ2/µ| − γ/µ} � sign(X−Λ2/µ).
(28)

Optimization with respect to J: The subproblem of J can
be given by

min
J

{
ΛT

3 (J−X) +
µ

2
‖J−X‖2F + l+R(J)

}
, (29)

J can be updated using the following rule

J← max{0,X−Λ3/µ}. (30)

Lagrange multipliers update {Λi}3i=1: In each iteration,
Lagrange multipliers need to be updated by

Λ1 ← Λ1+µ(G−Θ), Λ2 ← Λ2 + µ(H−X)

Λ3 ← Λ3 + µ(J−X).
(31)
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Fig. 2. Convergence analysis of SULoRA are experimentally performed on
a synthetic data and a real urban data.

E. Convergence Analysis and Computational Cost

ADMM used in our optimization problem can be actu-
ally generalized to inexact Augmented Lagrange Multiplier
(ALM) [33], whose convergence has been well studied when
the number of block is less than three [29]. There is still
not a generally and strictly theoretical proof in multi-blocks
case. Fortunately for our case, its convergence is similarly
guaranteed and supported in [32][34][35][36][37]. Moreover,
we experimentally record the objective function values in each
iteration to draw the convergence curves of SULoRA on two
used hyperspectral scenes (see Fig. 2).

As observed from Section III.D, the computational cost in
the SULoRA algorithm is dominated by matrix products, and
then the computational complexity of each subproblem in Eq.
(18) with respect to the variables X, Θ, G, H, and J are,
in each iteration, O(D2N), O(D2N), O(D3), O(PN), and
O(PN), respectively, where the most costly step is solving
Θ, hence yielding an overall O(D2N) computational cost for
Eq. (18).

IV. EXPERIMENTS

In this section, we quantitatively and visually evaluate
the unmixing performance of the proposed SULoRA on a
synthetic dataset presented in [14] and two real datasets
over the areas of Urban and MUFFLE Gulfport Campus, in
comparison with eight classical and state-of-the-art methods,
including FCLSU, PCLSU, SPCLSU, SUnSAL, SSUnSAL
(scaled SUnSAL), SLRU (sparse and low-rank unmixing)
[38], PLMM and ELMM. We experimentally and empirically
choose the regularization parameters to maximize performance
of above methods. To make fair visual comparisons, we fix a
display range of the abundance maps from 0 to 1 in Figs. 4
and 9. Because there are some algorithms ignoring the effects
of scaling factors, resulting in the abundances that show the
maximum of the display range but actually exceed it.

A. Synthetic Data

1) Data Description: Spectral simulation in the synthetic
data is performed using five reference endmembers randomly
selected from the spectral library of United States Geological
Survey (USGS) with the size of 200×200 abundance maps
generated using Gaussian fields, which strictly satisfies the
abundance non-negative constraint (ANC) and the abundance
sum-to-one constraint (ASC). The image consists of 200×200
pixels with 224 spectral bands in the wavelength from 400 nm
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Fig. 3. A false color image of the synthetic data and corresponding five
endmembers used for data simulation.

to 2500 nm with spectral resolution. Fig. 3 shows a false color
image of the synthetic data and five endmembers used for
data simulation. The details of data simulation process can be
unfolded as follows: Firstly, given five reference endmembers
from USGS library, we multiply randomly-generated scaling
factors ranging in [0.75, 1.25] by the spectral signatures,
then a 25dB white Gaussian noise was added to these scaled
reference endmembers. Secondly, we linearly mix them with
the generated abundance maps. Finally, an additive 25dB white
Gaussian was again added to the mixed spectrum. Using
this simulation process, the spectral signature of each pixel
in this dataset should be able to have a complex spectral
variability consisting of endmember-dependent scaling factors
and complex noise. Therefore, this simulated data with such
spectral variability will give us a proper scenario to validate the
proposed approach. More details for generating the simulated
data can be found in [14].

2) Experimental Setup: Assuming the presence of pure
endmembers in HSI scene, VCA, which is one of the most
popular endmember extraction methods, is adopted in this
paper to construct the endmember dictionary, while Hysime
is used to estimate the number of endmembers. Next, these
extracted endmembers can be effectively identified using the
spectral angle compared to five reference endmembers.

To fairly assess the unmixing performance, we set the
optimal parameters for the different algorithms. Both SUnSAL
and SSUnSAL are parameterized by 2e − 3 on the sparsity-
promoting term, while three regularization parameters [12] for
abundances, endmembers, and perturbation in the PLMM are
set to be 1e−2, 1e−2, and 1, respectively. The regularization
parameter λS [14] in the ELMM is set to be 0.5. We also set
the parameters of SLRU’s sparse and low-rank terms to 2e−3
and 1e−2. α, β, and γ in Eqs. (16) and (17) can be set to 0.1,
0.01, and 8e − 3, respectively to maximize the performance
of SULoRA.

Considering a fact that our method is an alternating min-
imizing optimization problem for multi-variables, a proper
initialization would lead to a fast and reasonable solution.
The abundance maps (X0) is initialized using the output of
SPCLSU. Please refer to Algorithm 1 for more parameter
settings.

We draw on three criteria of [14] to quantify the
unmixing results, that is abundance overall root mean
square error (aRMSE), reconstruction overall root mean
square error (rRMSE), and average spectral angle mapper
(aSAM). When the groundtruth of abundance maps (Xg =
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Fig. 4. Abundances estimated by different SU methods (each column
corresponds to one endmember extracted by VCA ) and the first row shows
the ground truth.

[xg1, ...,x
g
i , ...,x

g
N ] ∈ RP×N ) is given, and then the estimated

abundance maps (Xe = [xe1, ...,x
e
i , ...,x

e
N ] ∈ RP×N ) can be

measured by aRMSE defined as

aRMSE =
1

N

N∑
i=1

√√√√ 1

P

P∑
p=1

(xepi − xgpi)
2. (32)

If without the reference of abundance maps, the other two
rules (rRMSE and aSAM) are used by computing reconstruc-
tion errors between the observed hyperspectral data Yo =
[yo1, ...,y

o
i , ...,y

o
N ] ∈ RD×N and its reconstruction Yr =

[yr1, ...,y
r
i , ...,y

r
N ] ∈ RD×N . The former is defined by

rRMSE =
1

N

N∑
i=1

√√√√ 1

D

D∑
l=1

(yrdi − yodi)
2, (33)
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TABLE I
THE QUANTITATIVE COMPARISON OF UNMIXING PERFORMANCE FOR THE DIFFERENT ALGORITHMS ON THE SYNTHETIC DATA. THE BEST ONE IS

MARKED IN BOLD.

Algorithm FCLSU PCLSU SUnSAL SPCLSU SSUnSAL SLRU PLMM ELMM SURoLA
aRMSE 0.0630 0.0421 0.0399 0.0263 0.0243 0.0239 0.0621 0.0323 0.0220
rRMSE 0.0150 0.0123 0.0123 0.0123 0.0123 0.0123 0.0129 0.0058 0.0011
aSAM 1.9836 1.7717 1.7726 1.7717 1.7726 1.7712 1.8427 0.8392 0.1789
O DPN DPN DPN DPN DPN DPN DP 2N DP 2N D2N
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Fig. 5. Difference abundance maps using different spectral unmixing methods
corresponding to Fig. 4.

while the latter is aSAM, expressed as

aSAM =
1

N

N∑
k=1

arccos

(
yrTi yoi
‖yri ‖‖yoi ‖

)
. (34)

For a fair and reasonable comparison, we average the results
of the three criteria out of 10 runs for the different algorithms,
because VCA cannot always guarantee the same estimations
in each round.

3) Results and Discussion: Fig. 4 shows the estimated
abundance maps of the different algorithms, while Table I
correspondingly lists the quantitative assessment for three
different indices (aRMSE, rRMSE, and aSAM) and compu-

tational cost for each algorithm. Since the visual difference
of Fig. 4 is not salient, we highlight the differences by the
abundance difference maps displayed in Fig. 5.

Visually, FCLSU and PLMM yield a poor performance due
to the presence of the spectral variability in the simulated
scene. More precisely, the abundance maps estimated by
FCLSU fully absorb the spectral variabilities, attributing to
the sum-to-one constraint. Taking the rest of algorithms by
and large, those of modeling scaling factors outperform those
without considering ones. A similar quantitative trend also can
be found in Table I. In details, the performance of PCLSU is
better than that of FCLSU, since the PCLSU’s abundances can
be reasonably estimated in a cone not in a simplex by dropping
the ASC. Actually the spectral variability is not eliminated by
PCLSU, but still partially absorbed by the abundances. Fig. 4
provides a convincing evidence that the abundances for some
pixels are higher than 1, and this violates the ASC. By trick-
ily alleviating the effects of scaling factors, the abundances
estimated by SPCLSU are more accurate than PCLSU’s.
Putting the sparse prior on the abundance maps, SUnSAL
and its scaled version (SSUnSAL) can further improve the
performance compared to those without the sparsity-promoting
term. This indirectly demonstrates that each pixel in HSI is
composed of a few materials. In SLRU, the abundance maps
are simultaneously constrained to be sparse and low-rank,
leading to a slight improvement compared to only sparsity-
promoting SUnSAL algorithm.

The ability in handling the other spectral variability that
scaling factors can not be explained limits the ELMM. Fur-
thermore, ELMM needs to simultaneously estimate a coupled
set of variables (the scaling factors and abundance maps),
this leads to a non-convex optimization problem, which easily
drops to a local minimum. In a local region of HSI, the scaling
factors for the different endmembers are highly correlated,
because the endmember variability is dominated by the to-
pography structure. This is possibly another factor that hinders
the performance of the ELMM improving. For the PLMM, it
attempts to model the spectral variabilities in a general way,
but only a perturbed information assumed by a Gaussian prior
fails to represent the spectral variability (e.g. scaling factors).

As expected, the performance of the subspace-based spectral
unmixing (the proposed SULoRA) is superior to that of
other algorithms unmixing in the original hyperspectral space,
indicating its superiority and effectiveness in dealing with
the spectral variability. Fig. 5 highlights a more significant
comparison using abundance difference maps between the
groundtruth and the estimated abundance maps, where there
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are lower difference values in SULoRA than in others.
4) Parameters Sensitivity Analysis: The performance of the

proposed SULoRA algorithm in Eq. (18) is, to some extent,
sensitive to the setting of three regularization parameters (α, β,
and γ), it is, as a result, indispensable to search a set of optimal
parameter combination. For this reason, the corresponding
experiments are conducted to investigate the parameters effects
on the performance of estimating abundance maps (measured
by aRMSE), as specifically shown in Fig. 6 where the optimal
parameter combination in SULoRA is α = 0.1, β = 0.01, and
γ = 8e− 3, respectively.

5) Robustness Analysis to Sparse Noise: We further inves-
tigate the robustness of the SULoRA against sparse noise. For
this purpose, the simulated data is corrupted by sparse noise
with different corrupted levels, namely ratio = 0, 0.1, 0.2, 0.3,
where ratio = 0 denotes no additional sparse noise is added
to the simulated data while ratio = 0.1, for instance, means
that the 10% of total pixels are corrupted by additional sparse
noise. Please refer to [39][40][41] for more experimental
setting. As can be seen from Fig. 7, with the increase of sparse
noise ratio, the performance of most compared approaches
dramatically degrades, yet SULoRA still holds a stable and
robust performance.

B. Real Data Over Urban Area

1) Data Description: This dataset was acquired by the
Hyperspectral Digital Imagery Collection Experiment (HY-
DICE) over an urban area of Copperas Cove, Texas, USA.
The entire image consists of 307 × 307 pixels at a ground
sampling distance (GSD) of 2m, and 58 noisy bands are
removed, so that a total of 162 bands covering the spectral
rank from 400nm to 2500nm with spectral resolution of 10
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Fig. 8. A false color image of the Urban data and four extracted endmembers
used in spectral unmixing.

nm is selected by removing 58 noisy bands corrupted by
water absorption and atmospheric effects in our experiments.
This dataset used in hyperspectral unmixing has been widely
reported in [42][43][44]. Additionally, we use a latest data
version issued by Geospatial Research Laboratory (USA) and
Engineer Research and Development Center (USA) in 2015.1

Fig. 8(a) shows a false color image of the study scene and the
endmembers are extracted by VCA.

2) Experimental Setup: There are four main endmembers
in the scene: asphalt (road and parking lot), grass, trees, and
roof. Please see the references [42] and [44] for more details.
Similarly to the first data, HySime and VCA are adopted
to determine the number of endmembers and extract the
endmembers, respectively. Fig. 8(b) shows the endmembers
used in spectral unmixing. The endmembers can be simply
identified by comparing with the reference endmembers. 2

According to two indices of aRMSE and aSAM, we select
the optimal parameters for these compared algorithms. The
parameters for the sparse and low-rank regularization terms in
SLRU are set to 1e − 2 and 1e − 2. The sparsity-promoting
term in SUnSAL and SSUnSAL is penalized by 6e−3, while
for PLMM, three regularization parameters for abundances,
endmembers, and perturbation are selected to be 1e−2, 1e−3,
and 1, respectively. The balance parameter λS in the ELMM
is still 0.5. We finely tune α, β, and γ in SULoRA to 0.1,
0.01, and 5e− 3, respectively.

3) Results and Analysis: As there are no references of the
abundance maps for the urban dataset, we propose to apply
classification maps, i.e. overall accuracy (OA), to approxi-
mately assess the abundance maps. By comparing with the
reference endmembers, the spectral angle mapper (SAM) is
used to roughly generate classification results, as shown in the

1http://www.tec.army.mil/Hypercube
2The reference endmembers can be introduced in [44] and [43].



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, XXXX, 2018 10

TABLE II
THE QUANTITATIVE COMPARISON OF UNMIXING PERFORMANCE FOR THE DIFFERENT ALGORITHMS ON THE REAL URBAN DATA. THE BEST ONE IS

MARKED IN BOLD.

Algorithm FCLSU PCLSU SUnSAL SPCLSU SSUnSAL SLRU PLMM ELMM SULoRA
OA (%) 54.66 68.08 71.26 68.08 71.26 73.59 58.55 62.41 86.71
rRMSE 0.0397 0.0086 0.0086 0.0086 0.0086 0.0084 0.0111 0.0072 0.0019
aSAM 8.6734 2.9569 2.9582 2.9569 2.9582 2.9472 3.6240 2.0378 0.6491
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Fig. 9. Abundance maps comparison between the proposed method and the
state-of-art methods.

first row of Fig. 9 where the positive samples are marked in
cosine similarity, while negative samples are masked out with

0. More specifically, we classify each pixel into an endmember
with a maximum abundance response. As a result, OA can be
regarded as a new index for evaluating the different methods,
as listed in Table II. FCLSU performs a worse estimation in
the abundances compared to other algorithms, since a more
complex spectral variability comes into play in the real data.
PCLSU sill fails to well deal with such spectral variability,
despite a better performance than FCLSU. As visually shown
in the Fig. 9, SPCLSU can effectively identify the materials
of asphalt, trees, and roof, while considering scaling factors.
As a comparison, neither FCLSU nor PCLSU detects the
material of the asphalt, but SPCLSU successfully does. The
regular pattern is also applicable to SUnSAL and SSUnSAL.
By additionally considering a low-rank prior in the process
of estimating abundance maps, SLRU performs better than
SUnSAL, but it still fails to address the complex spectral
variability.

Although ELMM is able to detect some areas, e.g. trees and
roof, the complex spectral variability in the real scenario can
not be fully interpreted only by scaling factors. This results
in a relatively lower rRMSE and aSAM, as listed in Table II.
On the other hand, the hard optimization problem in ELMM is
another drawback, limiting ELMM up to a better performance.
The main factor for the poor performance of PLMM is lack of
a powerful fitting ability in the spectral variability by analyzing
the visual and quantitative results from both Fig. 9 and Table
II.

Thanks to the high-resolution of the urban HSI, we can
find many pure pixels, but they are mistaken as mixed pixels
with the existence of spectral variability. This easily makes
many pixels misclassified using the aforementioned methods.
Different with them, SULoRA can estimate the abundance
maps in a robust subspace, so that its visual effect is superior
to others’, as shown in Fig. 9, and a consistent numerical
evaluation is also listed in Table II. For instance, the asphalt
and grass can be purely identified by SULoRA, unlike the
others. The abundance maps of the tree and roof estimated
by SULoRA show higher contrast as well. These phenomena
can objectively explain the robustness and effectiveness of the
proposed method.

C. Real Data (MUUFL Gulfport Campus)

1) Data Description: As introduced in [45], [46], the
labeled hyperspectral image can be used for ultimately assess-
ing the unmixing performance, hence the MUUFL Gulfport
dataset is chosen as the second real data in our case, collected
over the campus area in University of Southern Mississippi-
Gulfpark Campus, Long Beach, Mississippi, USA [47]. It



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, XXXX, 2018 11

TABLE III
THE QUANTITATIVE COMPARISON OF UNMIXING PERFORMANCE FOR THE DIFFERENT ALGORITHMS ON THE MUFFLE GULFPORT CAMPUS DATA. THE

BEST ONE IS MARKED IN BOLD.

Algorithm FCLSU PCLSU SUnSAL SPCLSU SSUnSAL SLRU PLMM ELMM SULoRA
OA (%) 55.52 62.21 66.61 62.21 66.61 66.58 51.65 63.16 85.86
rRMSE 0.0135 0.0110 0.0109 0.0110 0.0109 0.0162 0.0099 0.0127 0.0058
aSAM 5.5854 4.7699 4.7830 4.7699 4.7830 6.6452 4.0436 5.1839 2.6003
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Fig. 10. A RGB image of the MUFFLE dataset and eight extracted
endmembers used in spectral unmixing.

consists of 325 × 220 pixels at a GDS of 1m. There are
11 classes in this study scene, but we just consider 8 main
classes as they have enough number of pixels and clear spatial
structure for a easier visualization, that is #1 trees, #2 mostly-
grass ground surface, #3 mixed ground surface, #4 dirt and
sand, #5 road, #6 buildings, #7 shadow of buildings, and #8
sidewalk. The 8 noisy bands were removed, resulting in a total
of 64 bands left in the spectral range from 375nm to 1050nm.
Fig. 10 shows a RGB image and the endmembers extracted
by VCA of the used scene.

2) Experimental Setup: Likewise, the number of endmem-
bers can be estimated by HySime and the endmembers can
be extracted by VCA. The extracted endmembers are handily
identified using SAM, as massive labeled samples for each
class are available.

The optimal parameters for all compared methods and the
proposed SULoRA are detailed in the following. The l1-norm
term in SUnSAL and SSUnSAL is parameterized by 3e − 4,
while the parameters for SLRU are 2e−4 and 0.1, respectively.
Three regularization parameters in PLMM are set to be 1e−3,
1e− 2, and 1, respectively, while the parameter λS in ELMM
plays a role in balancing the two fidelity terms, which is
assigned to 0.5 in our case. For SULoRA, α, β, and γ are
experimentally assigned to 0.8, 0.1, and 6e− 4, respectively.

3) Results and Analysis: Given these labeled classification
maps of each class as shown in the first row of Fig. 11, classifi-
cation (e.g., OA) can be explored as a potential way to evaluate
the quality of estimated abundance maps. Correspondingly,
Table III quantitatively lists the performance assessment (three
indices: OA, rRMSE, and aSAM) for all algorithms.

FCLSU shows a poor estimation in abundance maps, since
it fails to model the complex spectral variabilities. For those
algorithms that provide different priors in estimating the abun-
dance maps, e.g., scaling (SPCLSU, SSUnSAL), sparse (SUn-
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Fig. 11. Abundance maps comparison between the proposed method and the
state-of-art methods.

SAL, SSUnSAL), low-rank (SLRU), etc., there is a moderate
performance improvement compared to those without consid-
ering prior knowledge. One thing to be noted is that PLMM
obtains desirable results of rRMSE and aSAM in comparison
with previous methods (expect our proposed SULoRA), but
interestingly it yields a poorest OA. The reason for this mainly
lies in that only perturbation information hardly represents the
complex spectral variability, and meanwhile such modeling
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strategy could also corrupt some important spectral attributes
misdeemed as certain spectral variability. As can be seen from
Fig. 11, ELMM obtains a good abundance estimation, since it
is good at handling the scaling factors (principle spectral vari-
ability). But unfortunately, ELMM’s performance is limited
by the presence of other spectral variabilities. In a word, these
previously proposed methods basically pay more attentions on
somewhat special spectral variability, lacking of generalization
ability. Considering the complexity of the spectral variability
in real-world, the proposed SULoRA accounts for spectral
variability in a generalized fashion by embedding the low-
rank attribute, resulting in more robust and effective unmixing
results visually and quantitatively (see Fig. 11).

V. CONCLUSION

This paper is motivated by the fact that the spectral signature
in the original hyperspectral space inevitably suffers from
largely and diversely spectral variabilities. To address this
issue, we propose to unmix the HSI in a subspace instead
of in the original space. This results in a general subspace
unmixing framework that jointly learns a subspace projection
and abundance maps. With the low-rank attribute embedding,
we further develop a low-rank subspace unmixing approach,
called spectral unmixing with low-rank attribute embedding
(SULoRA). Experimental results demonstrate that SULoRA
is able to obtain a higher unmixing performance both visually
and quantitatively, than other state-of-the-art algorithms. In the
future, we would like to cast the subspace-based framework to
advanced unmxing methods designed in the original spectral
space, aiming at a more robust spectral unmixing.
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