89 research outputs found

    DOES CHRONIC ALCOHOLISM CAUSE CHRONIC GASTRITIS?

    Get PDF
    No abstrac

    Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures

    Get PDF
    After slow progress in the efforts to develop phase plates for electron microscopes, functional phase plate using thin carbon film has been reported recently. It permits collecting high-contrast images of close-to-life biological structures with cryo-fixation and without staining. This report reviews the state of the art for phase plates and what is innovated with them in biological electron microscopy. The extension of thin-film phase plates to the material-less type using electrostatic field or magnetic field is also addressed

    Effect of a Physical Phase Plate on Contrast Transfer in an Aberration-Corrected Transmission Electron Microscope

    Full text link
    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions - i.e. range of Cs-values and defocus - for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in Cs-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and Cs-variations, compared to a microscope without a phase plate

    Design of an electron microscope phase plate using a focused continuous-wave laser

    Full text link
    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser-electron-interaction, study resonant cavities for enhancing the laser intensity, and discuss applications in biology, soft materials science, and atomic and molecular physics.Comment: 5 pages, 3 figure

    Structure and dynamics of the active Gs-coupled human secretin receptor

    Get PDF
    The class B secretin GPCR (SecR) has broad physiological effects, with target potential for treatment of metabolic and cardiovascular disease. Molecular understanding of SecR binding and activation is important for its therapeutic exploitation. We combined cryo-electron microscopy, molecular dynamics, and biochemical cross-linking to determine a 2.3 Å structure, and interrogate dynamics, of secretin bound to the SecR:Gs complex. SecR exhibited a unique organization of its extracellular domain (ECD) relative to its 7-transmembrane (TM) core, forming more extended interactions than other family members. Numerous polar interactions formed between secretin and the receptor extracellular loops (ECLs) and TM helices. Cysteine-cross-linking, cryo-electron microscopy multivariate analysis and molecular dynamics simulations revealed that interactions between peptide and receptor were dynamic, and suggested a model for initial peptide engagement where early interactions between the far N-terminus of the peptide and SecR ECL2 likely occur following initial binding of the peptide C-terminus to the ECD

    Community recommendations on cryoEM data archiving and validation

    Get PDF
    In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop’s motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.The workshop was supported by funding to PDBe and EMDB by the Wellcome Trust (grant No. 104948/Z/14/Z awarded to GJK, SV and AP) and by the European Molecular Biology Laboratory. Travel was supported by the PDBe, EMDB, RCSB PDB, PDBj, BMRB and EMDR. RCSB PDB is jointly funded by the National Science Foundation (grant No. DBI1832184); the US Department of Energy (grant No. DESC0019749); and the National Cancer Institute, National Institute of Allergy and Infectious Diseases, and National Institute of General Medical Sciences of the National Institutes of Health (grant No. R01GM133198). PDBj is funded by JST-NBDC and BMRB by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) (grant No. R24GM150793). EMDR was funded by the NIGMS of the NIH (grant No. R01GM079429).Peer reviewe

    Blind Transmitter Authentication for Spectrum Security and Enforcement

    No full text
    Recent advances in spectrum access technologies, such as cognitive radios, have made spectrum sharing a viable option for addressing the spectrum shortage problem. However, these advances have also contributed to the increased possibility of 'hacked' or 'rogue' radios causing harm to the spectrum sharing ecosystem by causing significant interference to other wireless devices. One approach for countering such threats is to employ a scheme that can be used by a regulatory entity (e.g., FCC) to uniquely identify a transmitter by authenticating its waveform. This enables the regulatory entity to collect solid evidence of rogue transmissions that can be used later during an adjudication process. We coin the term Blind Transmitter Authentication (BTA) to refer to this approach. Unlike in the existing techniques for PHY-layer authentication, in BTA, the entity that is authenticating the waveform is not the intended receiver. Hence, it has to extract and decode the authentication signal 'blindly' with little or no knowledge of the transmission parameters. In this paper, we propose a novel BTA scheme called Frequency offset Embedding for Authenticating Transmitters (FEAT). FEAT embeds the authentication information into the transmitted waveform by inserting an intentional frequency offset. Our results indicate that FEAT is a practically viable approach and is very robust to harsh channel conditions. Our evaluation of FEAT is based on theoretical bounds, simulations, and indoor experiments using an actual implementation. Copyright 2014 ACM.EI
    • …
    corecore