222 research outputs found

    A Self-Adjusting Spectral Conjugate Gradient Method for Large-Scale Unconstrained Optimization

    Get PDF
    This paper presents a hybrid spectral conjugate gradient method for large-scale unconstrained optimization, which possesses a self-adjusting property. Under the standard Wolfe conditions, its global convergence result is established. Preliminary numerical results are reported on a set of large-scale problems in CUTEr to show the convergence and efficiency of the proposed method

    Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour.) Skeels) Peel

    Get PDF
    Antioxidant activities of wampee peel extracts using five different solvents (ethanol, hexane, ethyl acetate, butanol and water) were determined by using in-vitro antioxidant models including total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, reducing power, and superoxide scavenging activity. Ethyl acetate fraction (EAF) exhibited the highest antioxidant activity compared to other fractions, even higher than synthetic antioxidant butylated hydroxyl toluene (BHT). In addition, the EAF exhibited strong anticancer activities against human gastric carcinoma (SGC-7901), human hepatocellular liver carcinoma (HepG-2) and human lung adenocarcinoma (A-549) cancer cell lines, higher than cisplatin, a conventional anticancer drug. The total phenolic content of wampee fraction was positively correlated with the antioxidant activity. This is the first report on the antioxidant and anticancer activities of the wampee peel extract. Thus, wampee peel can be used potentially as a readily accessible source of natural antioxidants and a possible pharmaceutical supplement

    A single-camera gaze tracking system under natural light

    Get PDF
    Gaze tracking is a human-computer interaction technology, and it has been widely studied in the academic and industrial fields. However, constrained by the performance of the specific sensors and algorithms, it has not been popularized for everyone. This paper proposes a single-camera gaze tracking system under natural light to enable its versatility. The iris center and anchor point are the most crucial factors for the accuracy of the system. The accurate iris center is detected by the simple active contour snakuscule, which is initialized by the prior knowledge of eye anatomical dimensions. After that, a novel anchor point is computed by the stable facial landmarks. Next, second-order mapping functions use the eye vectors and the head pose to estimate the points of regard. Finally, the gaze errors are improved by implementing a weight coefficient on the points of regard of the left and right eyes. The feature position of the iris center achieves an accuracy of 98.87% on the GI4E database when the normalized error is lower than 0.05. The accuracy of the gaze tracking method is superior to the-state-of-the-art appearance-based and feature-based methods on the EYEDIAP database

    Prediction of treatment response in lupus nephritis using density of tubulointerstitial macrophage infiltration

    Get PDF
    BackgroundLupus nephritis (LN) is a common disease with diverse clinical and pathological manifestations. A major challenge in the management of LN is the inability to predict its treatment response at an early stage. The objective of this study was to determine whether the density of tubulointerstitial macrophage infiltration can be used to predict treatment response in LN and whether its addition to clinicopathological data at the time of biopsy would improve risk prediction.MethodsIn this retrospective cohort study, 430 patients with LN in our hospital from January 2010 to December 2017 were included. We used immunohistochemistry to show macrophage and lymphocyte infiltration in their biopsy specimens, followed by quantification of the infiltration density. The outcome was the treatment response, defined as complete or partial remission at 12 months of immunosuppression.ResultsThe infiltration of CD68+ macrophages in the interstitium increased in patients with LN. High levels of CD68+ macrophage infiltration in the interstitium were associated with a low probability of treatment response in the adjusted analysis, and verse vice. The density of CD68+ macrophage infiltration in the interstitium alone predicted the response to immunosuppression (area under the curve [AUC], 0.70; 95% CI, 0.63 to 0.76). The addition of CD68+cells/interstitial field to the pathological and clinical data at biopsy in the prediction model resulted in an increased AUC of 0.78 (95% CI, 0.73 to 0.84).ConclusionThe density of tubulointerstitial macrophage infiltration is an independent predictor for treatment response in LN. Adding tubulointerstitial macrophage infiltration density to clinicopathological data at the time of biopsy significantly improves risk prediction of treatment response in LN patients

    IRF6 Is Directly Regulated by ZEB1 and ELF3, and Predicts a Favorable Prognosis in Gastric Cancer

    Get PDF
    Interferon regulatory factor 6 (IRF6) acts as a tumor suppressor and controls cell differentiation in ectodermal and craniofacial tissues by regulating expression of target genes. However, its function in gastric cancer (GC) remains unknown to date. In this study, we found that the IRF6 expression was significantly downregulated in GC. And the decreased expression of IRF6 was clinically correlated with poor prognosis of GC. Moreover, loss-of-function and gain-of-function studies showed that IRF6 was negatively regulated by ZEB1 but positively regulated by ELF3. Additionally, transcription factor ZEB1 and ELF3 could directly bind on IRF6 promoter, which suggested that transcription factor IRF6 is transcriptionally regulated by ZEB1 and ELF3. Nevertheless, we found that IRF6 expression was negatively related to its promoter methylation in TCGA stomach cancer cohorts. The downregulation of IRF6 in GC might be due to the overexpression of ZEB1 and the DNA methylation of IRF6 promoter

    Brain mechanisms of valuable scientific problem finding inspired by heuristic knowledge

    Get PDF
    related heuristic knowledge. The authors assumed that the regions in the brain significantly activated by the finding scientific problems with related heuristic knowledge condition compared with the finding normal problems without related heuristic knowledge condition are relevant to the brain mechanisms of scientific problem finding inspired by heuristic knowledge. The first scenario more significantly activated the left precuneus and left angular gyrus than did the second scenario. These findings suggest that the precuneus is relevant to the successful storage and retrieval of heuristic knowledge and that the left angular gyrus is involved in the formation of novel associations between heuristic knowledge and problem situations for finding scientific problems

    Magnetic Manganese Oxide Sweetgum-Ball Nanospheres with Large Mesopores Regulate Tumor Microenvironments for Enhanced Tumor Nanotheranostics.

    Get PDF
    An important objective of cancer nanomedicine is to improve the delivery efficacy of functional agents to solid tumors for effective cancer imaging and therapy. Stimulus-responsive nanoplatforms can target and regulate the tumor microenvironment (TME) for the optimization of cancer theranostics. Here, we developed magnetic manganese oxide sweetgum-ball nanospheres (MMOSs) with large mesopores as tools for improved cancer theranostics. MMOSs contain magnetic iron oxide nanoparticles and mesoporous manganese oxide (MnO2) nanosheets, which are assembled into gumball-like structures on magnetic iron oxides. The large mesopores of MMOSs are suited for cargo loading with chlorin e6 (Ce6) and doxorubicin (DOX), thus producing so-called CD@MMOSs. The core of magnetic iron oxides could achieve magnetic targeting of tumors under a magnetic field (0.25 mT), and the targeted CD@MMOSs may decompose under TME conditions, thereby releasing loaded cargo molecules and reacting with endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and manganese (II) ions (Mn2+). Investigation in vivo in tumor-bearing mice models showed that the CD@MMOS nanoplatforms achieved TME-responsive cargo release, which might be applied in chemotherapy and photodynamic therapy. A remarkable in vivo synergy of diagnostic and therapeutic functionalities was achieved by the decomposition of CD@MMOSs and coadministration with chemo-photodynamic therapy of tumors using the magnetic targeting mechanism. Thus, the result of this study demonstrates the feasibility of smart nanotheranostics to achieve tumor-specific enhanced combination therapy

    Organochlorine Pesticides in Consumer Fish and Mollusks of Liaoning Province, China: Distribution and Human Exposure Implications

    Get PDF
    Fish and mollusk samples were collected from markets located in 12 cities in Liaoning province, China, during August and September 2007, and 22 organochlorine pesticides (OCPs) were detected. DDT, HCH, endosulfan, chlordane, and HCB were the dominating OCPs, with mean concentrations and ranges of, respectively, 15.41 and 0.57 to 177.56 ng/g, 0.84 and below detection limit (BDL) to 22.99 ng/g, 1.31 and BDL to 13.1 ng/g, 1.05 and BDL to 15.68 ng/g, and 0.63 and BDL to 9.21 ng/g in all fish and mollusk samples. The concentrations of other OCPs generally were low and were detectable in a minority of samples, reflecting the low levels of these OCPs in the study region. In general, OCP concentrations were obviously higher in fish than in mollusks, and higher in freshwater fish than in marine fish, which indicated, first, that freshwater fish are more easily influenced than seawater fish and mollusks by OCP residues in agricultural areas and, second, that there are different biota accumulation factors for OCPs between fish and mollusk. To learn the consumption of fish and mollusk, 256 questionnaires were sent to families in 12 cities of Liaoning province. Using the contamination data, average estimated daily intakes of OCPs via fish and mollusk consumption were calculated, which were used for exposure assessment. The public health risks caused by exposure to OCPs in the course of fish and mollusk consumption were compared to noncancer benchmarks and cancer benchmarks

    Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed

    Get PDF
    Brassica napus (AACC, 2n=38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7 and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (Single Nucleotide Polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid cro
    corecore