294 research outputs found
Mixing in a fluid flowing through a packed bed
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1948.Includes bibliographical references (leaf 68).by P.V. Danckwerts, A.C. Sugden.M.S
Moving walls accelerate mixing
Mixing in viscous fluids is challenging, but chaotic advection in principle
allows efficient mixing. In the best possible scenario,the decay rate of the
concentration profile of a passive scalar should be exponential in time. In
practice, several authors have found that the no-slip boundary condition at the
walls of a vessel can slow down mixing considerably, turning an exponential
decay into a power law. This slowdown affects the whole mixing region, and not
just the vicinity of the wall. The reason is that when the chaotic mixing
region extends to the wall, a separatrix connects to it. The approach to the
wall along that separatrix is polynomial in time and dominates the long-time
decay. However, if the walls are moved or rotated, closed orbits appear,
separated from the central mixing region by a hyperbolic fixed point with a
homoclinic orbit. The long-time approach to the fixed point is exponential, so
an overall exponential decay is recovered, albeit with a thin unmixed region
near the wall.Comment: 17 pages, 13 figures. PDFLaTeX with RevTeX 4-1 styl
Quantification of the performance of chaotic micromixers on the basis of finite time Lyapunov exponents
Chaotic micromixers such as the staggered herringbone mixer developed by
Stroock et al. allow efficient mixing of fluids even at low Reynolds number by
repeated stretching and folding of the fluid interfaces. The ability of the
fluid to mix well depends on the rate at which "chaotic advection" occurs in
the mixer. An optimization of mixer geometries is a non trivial task which is
often performed by time consuming and expensive trial and error experiments. In
this paper an algorithm is presented that applies the concept of finite-time
Lyapunov exponents to obtain a quantitative measure of the chaotic advection of
the flow and hence the performance of micromixers. By performing lattice
Boltzmann simulations of the flow inside a mixer geometry, introducing massless
and non-interacting tracer particles and following their trajectories the
finite time Lyapunov exponents can be calculated. The applicability of the
method is demonstrated by a comparison of the improved geometrical structure of
the staggered herringbone mixer with available literature data.Comment: 9 pages, 8 figure
Atomic-scale confinement of optical fields
In the presence of matter there is no fundamental limit preventing
confinement of visible light even down to atomic scales. Achieving such
confinement and the corresponding intensity enhancement inevitably requires
simultaneous control over atomic-scale details of material structures and over
the optical modes that such structures support. By means of self-assembly we
have obtained side-by-side aligned gold nanorod dimers with robust
atomically-defined gaps reaching below 0.5 nm. The existence of
atomically-confined light fields in these gaps is demonstrated by observing
extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer
eigenmodes of more than 800 meV in white-light scattering experiments. Our
results open new perspectives for atomically-resolved spectroscopic imaging,
deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the
realization of novel quantum-optical devices
Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation
Continuous hydrothermal synthesis was highlighted in a recent review as an enabling technology for the production of nanoparticles. In recent years, it has been shown to be a suitable reaction medium for the synthesis of a wide range of nanomaterials. Many single and complex nanomaterials such as metals, metal oxides, doped oxides, carbonates, sulfides, hydroxides, phosphates, and metal organic frameworks can be formed using continuous hydrothermal synthesis techniques. This work presents a methodology to characterize continuous hydrothermal flow systems both experimentally and numerically, and to determine the scalability of a counter current supercritical water reactor for the large scale production (>1,000 T·year–1) of nanomaterials. Experiments were performed using a purpose-built continuous flow rig, featuring an injection loop on a metal salt feed line, which allowed the injection of a chromophoric tracer. At the system outlet, the tracer was detected using UV/Vis absorption, which could be used to measure the residence time distribution within the reactor volume. Computational fluid dynamics (CFD) calculations were also conducted using a modeled geometry to represent the experimental apparatus. The performance of the CFD model was tested against experimental data, verifying that the CFD model accurately predicted the nucleation and growth of the nanomaterials inside the reactor
Tandem Mass Spectrometry Measurement of the Collision Products of Carbamate Anions Derived from CO2 Capture Sorbents: Paving the Way for Accurate Quantitation
The reaction between CO2 and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d4-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN−, NCO− and facile neutral losses of CO2 and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (−CO2, 44 mass units), loss of 46 mass units and the fragments NCO− (m/z 42) and CN− (m/z 26). We also report low energy CID results for the dicarbamate dianion (−O2CNHC2H4NHCO2−) commonly encountered in CO2 capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO2 capture products could lead to dynamic operational tuning of CO2 capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies
Interactions of nanorod particles in the strong coupling regime
The plasmon coupling in a nanorod dimer obeys the exponential size dependence
according to the Universal Plasmon Ruler Equation. However, it was shown
recently that such a model does not hold at short nanorod distance (Nano Lett.
2009, 9, 1651). Here we study the nanorod coupling in various cases, including
nanorod dimer with the asymmetrical lengths and symmetrical dimer with the
varying gap width. The asymmetrical nanorod dimer causes two plasmon modes: one
is the attractive lower- energy mode and the other the repulsive high-energy
mode. Using a simple coupled LC-resonator model, the position of dimer
resonance has been determined analytically. Moreover, we found that the plasmon
coupling of symmetrical cylindrical (or rectangular) nanorod dimer is governed
uniquely by gap width scaled for the (effective) rod radius rather than for the
rod length. A new Plasmon Ruler Equation without using the fitting parameters
has been proposed, which agrees well with the FDTD calculations. The method has
also been extended to study the plasmonic wave-guiding in a linear chain of
gold nanorod particles. A field decay length up to 2700nm with the lateral mode
size about 50nm (~wavelength/28) has been suggested.Comment: 31 pages, 6 figures, 58 reference
- …