MIXING IN A FLUID FLOWING
 THROUGH A PACKED BED

by
P. V. Danckwerts
B. A. Oxford University 1939
A. C. Sugden
B. Sc. London University 1943

> Submitted in Partial Fulfillment
> of the
> Requirements for the Degree of Master of
> Science in Chemical Engineering Practice Prom the
> Massachusetts Institute of Technology

1947

Signature of Authors

Signature of Professor in Charge of Research

Signature of Head of Department \qquad

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.
Some pages in the original document contain text that runs off the edge of the page.

May 26, 1947

Professor J. S. Newell
Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Dear Sir:
In accordance with the regulations of the
Faculty, we hereby submit a thesis entitled "Mixing
in a Fluid Flowing Through a Packed Bed," in partial
fulfillment of the requirements for the degree of
Master of Science in Chemical Engineering Practice.
Very sincerely yours,

/pr

ACKNOWLEDGEMENT。

The authors wish to take this opportunity to expres:s their thanks to Professors E.E.Gilliland, A.M.Smith, and H.S.Mickley for their many helpful criticisms and suggestions:

Thanks are also due to J.Polack for his suggestions and encouragement in all stages of the research.

TABLE OF CONTENTS •

I SUMMARY 1
II INTRODUCTION. 3
III APPARATUS AND PROCEDURE 10
IV RESUITS 14
V DISCUSSION OF RESULTS 15
VI CONCLUSIONS 23
VII RECCOMMENDATIONS FOR FUTURE WORK 25
VIII APPENDICES
A.GEOMETRY OF SPHERICAL PACKINGS, AND DERIVATION OF.A GEOMATRICAL MIXING COEFFICIENT 28
B. FLUID FLOW THROUGH PACKED TOWERS 39
C. DERIVATION OF "PROBABIIITY" EQUATION, AND COMPARISON WITH WILSON EQUATION. 50
D. CALIBRATION OF FLON MAN- OMETER AND COLORIMETRIC. STANDARDS 58
E. ADDITIONAL NOTES ON
EXPERIMENTAL TECHNIQUE 59
F. SAMPIE CALCULATION. 63
H. NOMENCIATURE, DEFINITIONS AND SYMBOLS. 66
I. BIBLIOGRAPHY 68
TABULATED RESULTS
GRAPHS
FIGURES

I SUMMARY.

I SUMMARY.

The mixing processes which occur in a liquid flowing through a packed tower have been studied and measurea.

Water was passed up a packed tower, and an indicator solution of methylene blue injected at the axis. The rate at which mixing occurred was determined by taking samples from various points and measuring their concentrations. The process of mixing was found to conform to the normal diffusion law, or to the law derived from "random walk" theory. (the two give very nearly the same expression), and an "apparent diffusion coefficient" D could be calculated from the distribution.

For spherical particles (with which most of the work was done):

$$
\frac{D \rho}{\mu}=0.035(\operatorname{Re})^{1.4}
$$

(where (Re) is the modified Reynolds' number), when (Re) was in the range $10-100$.

In this range it is considered that flow is turbulent in some parts of the packing, and streamline in others. The mixing process is thought to be caused by:
local turbulence (leading to "eddy diffusion) : splitting and scattering of streams by channeling (caused by fluctuations in the specific resistance to flow of various parts of the packing) : and possibly by displacement of elements of the liquid when they impinge on the particles.

IIINTRODUCTION. $\xrightarrow{-}$

II INTRODUCTITON

Otilitarian aspect of the problem. At the moment fixed-bed catalytic reactors are designed largely on the "hit-or-miss" or "build-and-try" principle, simply because it is not possible to calculate the dimensions and other characteristics of a reactor from small-scale experiments. Since the rate of a gaseous reaction at any point in the catalyst bed depends on the temperature and composition of the gas, it is clear that the rationalisation of reactor design must depend on a knowledge of the coefficients of heat-gnd mass transfer through the bed. As regards the latter, it is known that the nolecules of the gas do not in general travel in straight lines parallel to the apparent axis of flow, but follow a devious path, so that mixing takes place transversely and longitudinally. The temperature and composition of the gas at any point will, therefore, depend, among other things, on the rate at which this mixing takes place.

Object of Present Work. The experimental work described in this thesis was designed to throw some light on the mechanism and quantitative characteristics of the mixing which occurs when a fluid flows through a bed of particles of uniform size and shape. Since liquids are easier to handle than gases, it was decided to do the preliminary work using water as the moving fluid, on the supposition that there would be a general similarity to the case of a gas-stream, particularly at comparable Reynold's numbers. Although it was desirable to cover the range of Reynolds' numbers which might be expected in a catalytic reactor, it was also of interest to gain a picture of the behavior of the system over as wide a range as possible. In practice, the upper limit of flow rate
was fixed by the limitations of the apparatus, and the lower by limitations in the technique of measurement employed; the higher Reynolds' numbers were of the order of magnitude of those which might be encountered in a reactor.

Nature of the Phenomenon. In a gas-stream, mixing may be expected to occur in several ways during passage through a packing: normal diffusion, caused by thermal motion of the molecules: mixing due to turbulence: and possibly scattering caused by the diversion of various parts of the stream as they impinge on solid surfaces. In a liquid it was assumed (and with justification, as the experiments showed) that the normal diffusion coefficient would be negligibly small in comparison with the other effects at the rates of flow employed. We are thus left with turbulent mixing (or eddy-diffusion) and with the possibility of another distinguishable mechanism, which will be called displacement mixing.

Although no previous work on packed tubes had been published, a good deal has been done on eddy-diffusion in open tubes. Mixing occurs in a fluid in turbulent flow; because any element of fluid may have a backward, forward or sideways component of velocity superimposed on its mean flow velocity. The size of the "element" undergoing these fluctuations, the magnitude of the random velocities attained and the mean distance travelled between changes of direction are indeterminate; but the effective result is a mixing process, analogous to molecular diffusion, and susceptible to similar mathematical treatment.

In the case of molecular diffusion, the coefficient of diffusion D^{I} is defined by the expression

$$
\frac{d u}{d t}=A \cdot D^{\prime} \cdot \frac{d c}{d x}
$$

where $\frac{d h}{d t}$ is the rate at which molecules of the diffusing species cross area A of a plane at right-angles to the X-coordinate, c being the concentration of the diffusing species in molecules per unit volume. This is equivalent to the expression

$$
\frac{\partial c}{\partial t}=A \cdot D^{\prime}: \frac{\partial^{2} c}{\partial^{2} x^{2}}
$$

The foregoing expressions are true for the case where the concentration varies in one dimension only. For the more general case of variation in 3 dimensions:

$$
\frac{\partial c}{\partial t}=A \cdot D^{\prime}\left(\frac{\partial^{2} c}{\partial x^{2}}+\frac{\partial{ }^{2} c}{\partial y^{2}}+\frac{\partial \varepsilon^{2}}{\partial z^{2}}\right)
$$

The general validity of these diffusion laws can be demonstrated by considering the effects of random, independent movements of the diffusing molecules, such as occur in a gas. In a stagnant mass of gas, for instance, containing two or more species of molecule, any macroscopic variations in composition will in time disappear, because purely random movement will cause a net transfer of molecules of each species from regions where their concentration is high into regions where it is low. It is only necessary to assume that an individual molecule is equally likely to move in any direction at any moment, and thet the mean length of individual displacements in all directions is equal to show that the diffusion laws given above will follow. (see Kemard's "Kinetic Theory of Gases") - Subject to the limitations mentioned later.

In turbulent motion the elements undergoing random displacement are of macroscopic dimensions, and not individual molecules; the velocity of displacement will be comparable to the flow-velocity, and hence much slower than the thermal velocity in a gas; and the "mean free path" will no
doubt be much greater then for molecular movements. It would be expected, however, that the net effect, in a system large enought to dwarf the fluctuations due to turbulence, would be analogous to the molecular diffusion.

The theory of eddy diffusion, which will not be discussed in detail here, has been developed largely by G. I. Taylor (10); the work of v. Karman (11), Prandtl (20), Dryden (12), Sherwood and Woertz (13), Murphree (14), Goldstein (15) may also be consulted. In place of the "mean free path" of kinetic theory the concept of "mixing length" is employed-the mixing length being the mean distance which an eddy travels before breaking up and losing its identity; and the root mean square velocity is repleced by the mean instantaneous deviating velocity in a direction perpendicular to the main flow. Neither of these quantities can readily be derived from the parametus of the system; in fact the present state of the theory does not admit of a priori predictions of the eddy diffusivity (or eddy diffusion coefficient) such as can be made for the molecular diffusivity D from kinetic theory.

However, experimental work has shown that the turbulent mixing process can be described by the normal mathematical diffusion laws, substituting an eddy-diffusivity E in place of D^{I} - see Sherwood and Woertz (13), Sherwood and Towle (5), Weddell (17), Hawthorne (18), all of whom were investigating turbulence in open tubes, containing no packing. A similar conclusion was reached by Kalinske and Pien (19), who investigated mixing in open troughs.

When a fluid flows through a bed of solid particles at a sufficient rate to give rise to turbulence, therefore, it is to be expected that a
diffusion-like mixing process will be caused by eddy-diffusion, but it is not possible to make quantitative predictions. At lover rates of flow, where turbulence is non-existent or negligible, it would appear doubtful at first sight whether mixing would occur at 0.11 ; it might be expected that any two particles which entered the system close together would remain close together. This certainly is the case in a fluid in streamline flow past a single sphere (see Fig: IV(i). However, consideration of conditions in an assembly of spheres suggest that two particles which are separated by the splitting of the stream by a sphere may never regain their former relative positions, owning to the diversion of streams of fluid by other spheres in the assembly into the "gap" between the particles (see Fig. IV (ii)). Thus it is possible, without postulating discontinuities in the velocity distribution such as occur in turbulent motion, to conceive of purely streamline or viscous flow leading to permanent separation of particles which were originally close together. This is in effect a mixing process, and an attempt has been made to derive an expression for the corresponding mixing or diffusion coefficient, making certain simplifying assumptions (see Appendix "A"). This coefficient is referred to as the "geometrical" mixing coefficient, and the process as displacement mixing. However, considerations advanced in Appendix B suggest that the situation is complicated by the existence of channels in the packing, which lead to gross variations in the mass-velocity from region to region, so that the path of a particle is probably not determined soldy or even predominantly by the configuration of the solids in its immediate neighbourhood.

The only experimental investigations of fluid mixing in a packed tower have been carried out by Rabinowitz and Roessel (4), who worked out the apparatus and technique which have, with certain modifications, been used in the present work. It is thought, however, that their quantitative results were probably in error, owing to the excessive rate at which the indicator solution was introduced (see Appendix E).

Diffusion and random scattering. Rabinowitz and Roessel used an equation known as the Wilson equation (6) to calculate the mixing or apparent diffusion coefficient kwxax from measurements of concentration at various points in the tower. The Wilson equation is a solution of the general diffusion equation given earlier in this section, after the appropriate conditions have been inserted, and making the assumption that diffusion parallel to the axis of flow (i.e. longitudinal mixing) may be ignored. The present authors derived an equation similar to that used by Kalinske and Pien (19), by considering the distribution attained by particles undergoing random scattering; the derivation and final form of this "probability equation" is given in Appendix C. There is a discrepancy between the wilson equation and the probability equation, although ynder the conditions of the experiments described here the divergence was within
the experimental error. The rean for the discrepancy between the two equations is discussed in Appendix C.

III APPARATUSAND
PROCEDURE.
\qquad
III. Apparatus and Procedure (See Appendix E forfurther details)

Apparatus. This consisted of a constant head tank, providing a flow of water which was metered by an orifice and manometer. The water flowed up through a container filled with coarse packing, and then through a 4-inch glass tower which contained the packing under investigation (supported on wire gauze), and finally overflowed at the top of the tower. The indicabor solution was introduced at the bottom of the tower by a capillary tube set on the axis. Samples could be withdrawn from various points on th e packing by means of five $1 / 64$ inch steel capillary tubes inserted into the packing from above; these were rigidly mounted on a metal frame which held them vertically with their open ends in one horizontal plane and situated along a diameter of the tover. The samples were collected simultaneously in five test-tubes by applying a vacuum to the air-spaces of the latter. The tips of the sampling tubes were usually about an inch below the upper surface of the packing, and the total depth of packing in the tower was varied as convenient.

Procedure. Water was admitted at thedesired constant rate, and then the indicator solution (methylene blue, 25 gms./Iitre) was admitted thrdugh the injection tube. The rate of injection of indicator was adjusted to give a convenient depth of colour for the concentration determinations (see Appendix E). When steady state hed been reached a vacuum was applied to the collecting-tubes, and samples withdrawn from the tower. The first portions of liquid collected were thrown away, as they served to wash out the collecting-tubes. The samples proper were then collected. It appeared desirable to do this as slowly as possible, to avoid drawing into the
tubes; liquid from remote parts of the system. The time required to withdraw liquid through the capillary tubes at the same linear velocity/ as that of the stream through the packing would have been prohibitive, so the lowest convenient rate was used - - 0 -20 minutes for a sample of about 25cc. from each tube--i.e. 2-20 times the linear flow velocity of the stream. The effect of this was to increase the effective area of cross section from which the sample was withdraw; it is not believed to have dis--torted the results. It had been determined (see Appendix C) that the interpretation of the results did not depend on a constant rate of injection of indicator, as long as the mean concentration of the effluent was used for $C \%$ in the computation. Since the injection rate was not positively controlled, samples of effluent were taken at regular intervals during the sampling period, and mixed. There was a tendency for air to come out of solution and form bubbles on the packing, and it was feared that this might affect the results. Preheating of the water was tried and found to be useless. The effect was mitigated by stirring the packing before each run, thus dislodging the bubbles, which did not reack a size comparable with the packing particles during the course of a run.

Colorimetric analysis of methylene blue solutions. Methylene blue was used as an indicator because it can be estimated accurately and easily by its colour at great dilutions. Owing to the limitations on the rate of injection of indicator (discassed in Appendix E), the concentrations to be measured were as low as $1 / 4000$ that of the indicator solution injected. The solution used, since it contained only 25 gms . of methylene blue to a litre, was considered unlikely to differ greatly in density or viscosity
from pure water.
A Dubosca type colorimeter was used. The standard solution used for analysis was a $\frac{1}{1000}$ dilution of the inaicator solution. A curve was constructed experimentally, showing color-dencity as a function of concentration (departure from Beer's law is great). A number of sub-standards of various concentrations were also used. To determine the concentration of a sample, its color-density was determined by comparison in the colorimeter with one of the standards (the nearest one, because color as well as density appeared to alter with concentration) and its concentration read off the curve.

Pressure-gradient Measurements. In order to measure the pressuregradient through the packing at various velocities, pressure-taps were inserted below the gauze supporting the packing and above the top of the pacing, and connected to a manometer. This arrangement gave very erratic results, probably because air bubbles collected under the gauze and much increased its resistance. Since the greatest conceivable Pitot effect was estimated to be negligible, it was decided to insert tubes directly into the packing. A "pressure-probe" of the type shown in Fig. VIII vas used, the ends of the tubes*being turned upwards to prevent any bubbles entering or blocking them. Although results were inclined to be erratic, they were very much more reproducible than with the original arrangement. Calculation of Diffusion Coefficients. Several sets of samples having been taken with the flow velocity constant, a plot was made of

$$
\log _{10} \frac{C x}{C^{*}} \text { us. } \frac{Y^{2}}{X}
$$

$\left(\frac{c x}{c *}\right)$ being averaged for all samples with the same v and \boldsymbol{X}) and the best straight line consistent with the "probability" equation was drawn through the points. Either the slope or intercept of the line gave the value of FD. Details of the calculation are given in Appendix F.

IV RESUITS.
\qquad

The following is a table of the results obtained in this investigation

Packing type and size	Free volume	Superficial Velocity CMS/sec	Reynolds Number	Friction Factor	Pressure gradient Dynes/sq. CM/CM	Diffusion Coelficient CMS $2 / \mathrm{sec}$.
$\begin{aligned} & 6 \text { mm glass } \\ & \text { beads } \end{aligned}$	0.36	0.25	11.99	61	0.0129	0.0103
		0.314	15.05	52.0	0.0174	0.0165
		0.32	15.31	51.5	0.0179	0.0200
		1.07	51.3	24.5	0.0956	0.0834
		1.66	79.5	19.5	0.183	0.196
		1.85	88.7	17.5	0.204	0.225
		2.30	110.	15.5	0.279	0.389
$\begin{aligned} & 4 \text { mm glass } \\ & \text { beads } \end{aligned}$	0.36	0.28	8.93	75.5	0.0301	0.0105
		0.69	21.9	41.0	0.0995	0.0334
		1.22	38.9	29.0	0.220	0.0812
		1.75	55.8	23.3	0.363	0.133
		2.26	72.0	20.5	0.534	0.172
		2.36	75.3	20.0	0.568	0.224
3/8" catalyst spheres	0.40	1.06	92.2	11.4 11.4	$\begin{aligned} & 0.0240 \\ & 0.0240 \end{aligned}$	$\begin{aligned} & 0.0201 \\ & 0.228 \end{aligned}$
$\frac{11}{4}$ " Berl Saddles	0.59	1.91	97 (nominal)	$\begin{gathered} 32.8^{*} \\ \text { see appendix B } \end{gathered}$	0.0766	0.354

* 3/8-inch was manufacturer's nominal diameter. Dispiacement measurement of volume gave mean diameter as 11 mm .

V DISCUSSIONOF RESULTS.

V. Discussion of Results

Accuracy of Experimental Work. The chief source of inaccuracy was the fact that the concentration distribution was not continuous; particularly at low rates of flow, the concentration varied sharply from point to point. Since the samples were withdrawn in effect from a point source, it was necessary to take a considerable number of individual samples and average their concentrations in order to achieve reliable results. The situation is analogous to that of plotting the density of shots on a target; if samples consist of small, constant areas of the target, the deviation between individual samples taken in the same region will be least at the centre, and will become larger as one goes outwards to regions of lower density. In the same way, the variation between individual samples taken in corresponding positions became greater as one moved further from the axis of the tower.

An experiment was performed to show the point-to-point variations in concentration. The five sampling tubes were arranged so that they formed two compact groups, the members of each group being very close together. The following results were obtained:

γ (cms):0.97	1.16	1.40	. . 2.87	3.10
$C\{(a):=10.3$	18.4	8.3	. . . 0.33	0
$C^{*}\{(b): 9.0$	25.3	14.2 0.37	0

The samples (b) were taken immediately after (a), wit hout disturbing the apparatus. It can be seen that the relative concentrations do not decrease uniformly as q increases, that large variations occur within short distances, and that the configuration changes somewhat with time.

In the above experiment (Runs 67 and 68) the value of X was 20 cms . and of the Reynolds' number 16.

It is felt that the error in the measurements of concentration was negligible, compared to those arising from the above effect, since they were reproducible to within about 3%.

A possibility of error lay in the fact that the linear rate at which samples were withdrawn through the sampling tubes was greater than the linear velocity through the tower (see Section III). The effect of this was to draw in liquid from regions remote from the actual sampling-point. Here, again, however, it is felt that since the velocity of withdrawal was at most 30 times the rate of flow, and hence the effective sampling area was only about 5 times that of the tube in diameter, the error introduced was small compared to that due to fluctuations in the concentration. Indeed, by averaging the concentration over a wider area than the cross-section of the sampling-tube, the sample-to-sample variation may have been reduced.

Other sources of error which have been considered, and which are felt to be probably unimportant are: the excess of the speed of injection of indicator over the flow velocity, and the influence of air.bubbles on the effective shape and free volume of the packing (see section III.)

The nett error in the diffusion coefficient is difficult to estimate. From the consistency of the graphical correlation plots, it is considered that the maximum error is about 30%, and the average error between 5% and 10%.

The error in the measurement of the pressure-drop through the packing was of the order of $\pm 0.2 \mathrm{cms}$. of water for 20 cms . of packing. The reason for this error (when using the "probe" described in Appendix E) is not known; it obviously amount to a considerable relative error at low velocities and in the case of packings of low specific
resistance, such as $3 / 8$-inch spheres and Berle saddles. In future it might be desirable to use a considerably greater depth of packing to measure pressure-gradients.

Agreement with distribution equations. An inspection of graphs 9-18 will show that considering the discontinuities in the system, the distribution of concentration as found by averaging several measurements agreed remarkably well with either the Wilson or the probability equation. From an engineering point of view it is immaterial which law (if either) is followed exactly; however, the probability expression is more convenient, since it is easily integrated over a circular section; it is thus possible to calculate, for instance, the length of a tower of given diameter which is required, under given conditions, to"iron-out" or homogenise a fluid stream of non-uniform concentration (such a calculation is made, for example, on pages 21, 22 of Vol. I of the original lab. notes). Under the conditions obtaining in a catalytic reactor it is thought that abrupt discontinuities in concentration are unlikely to be encountered. In the first place, the Roynolds' number is likely to be such that considerable turbulent mixing will take place; secondly, the gaseous molecular diffusion co-efficient may be of the same order of magnitude as the coefficient of mixing due to flow, so that interdiffusion will occur between neighboring regions at all rates of flow.

Correlation of Results. Assuming that the magnitude of D depends only on the superficial velocity \mathcal{V} the fractional free volume, F, the density P and viscosity μ of the fluid, and the diameter of the packing particles d, and that the tower diameter does not influence it (see

Appendix B), dimensional analysis shows:

$$
\begin{aligned}
& \frac{D}{d v} \text { is a function of }\left(F, \frac{d v p}{\mu}\right) \\
& \text { or } \frac{\partial \rho}{\mu} \text { is a function of }\left(F, \frac{d v p}{\mu}\right)
\end{aligned}
$$

For the spherical packings, all but D, v and d are constant. Graph V shows a plot of D against $\frac{d \mu p}{\mu}$.
since the friction factor f, defined for spherical particles as

$$
f=\frac{\Delta P / L \cdot d}{2 p v^{2}}
$$

(where $\Delta \mathrm{p}$ is the pressure drop in absolute units through a depth L of packing) is a unique function of the Reynolds' number (see Appendix B), D was also plotted against f (graph IV). Within the range of conditions covered by the experiments, these plots show that, approximately:-

$$
\begin{aligned}
\frac{D p}{\mu} & =0.035(\mathrm{Re})^{1.4} \\
\sigma \frac{D P}{\mu} & =3(f)^{-2.36}
\end{aligned}
$$

(F was constant at 0.36 for all the experiments except those involving 11 mm .beads and Berle saddles; hence its part in the correlation cannot be determined.) It is clear that whatever the exact form of these two fundtins, d can be eliminated between them; this would be true even for nonspherical particles, using arbitrary values of d. Thus for any given shape of particle, it must be possible to express D as a function of $P, \mu, \forall, \frac{\Delta P}{L}$ and of some dimensionless factor to account for varialions in the fractional free volume. If it is desired to correlate data
in which the shape of the particles and the fractional free volume vary independently of each other and of the other variables, then an empirical
factor may have to be introduced to account for each of these. However, it appeared to the authors that shape and free volume might not appear in the correlation expression as independent variables, since their fffects might be absorbed into $\triangle P / L$. Hence dimensional analysis was applied on the assumption that D is a function of $\Delta P / L, p, \mu q$ only, and it was found that

$$
\frac{D \cdot \Delta P}{P \cdot v^{3} L} \quad \text { is a function of } \quad \frac{\Delta P \cdot \mu}{L} \frac{\mu}{v^{3} P^{2}}
$$

Since μ and P were constant throughout, D was plotted against $\frac{\Delta P}{L v^{3}}$ (Graph VII)

For the spherical particles,

$$
D=0.42\left(\frac{\rho L v^{3}}{\Delta p}\right)\left(\frac{L v^{3} p^{2}}{\Delta p \cdot \mu}\right)^{-0.2}
$$

and the single value of D for Berle saddles was within 15% of that given by this expression. Although not conclusive, this is a promising result, since Bert saddles are far removed from the sphere in shape, and their fractional free volume was 1.6 times that for the spherical packings.

If further experimental work on nonspherical backings confirms the validity of this relationship, it should be extremely useful, since it would enable values of 7 to be predicted for such packing from pressure-drop measurements alone, and these are relatively easy to carry out or (in some cases) to find in the literature, while any expression involving the friction factor or Reynolds number suffers from the indeterminacy of these numbers for irregular shapes.

It is interesting to note that if the Reynold's number for $1 / 4$-inch Berl saddles is calculated using this nominal diameter as d, the single value of D obtained for this packing falls close to the same line as that relating D to Re for spheres. However, it is not felt that this is more than a coincidence in view of the considerations put forward in Appendix B. In particular, the free volume for the saddles is much larger than for the spheres (0.59 and 0.36 respectively), and since there is every reason to believe that D depends on the free volume, it should enter into the correlation. In addition, there is some reason for thinking that the "nominal" Reynolds' number for Berl saddles does not correspond numerically with the Reynolds' number for spheres-i.e. that the change from turbulent to streamline flow does not occur over the same numerical range in the two cases. (See Appendix B).

Interpretation of Results. It does not appear feasible to provide a detailed and quantitative picture of the phenomena which lead to the type of mixing observed. There is good reason to believe that in all cases the flow through the packing was turbulent in some spots and streamline in others; hence one would not expect the diffusion co-efficients to bear any more simple a relationship to the Reynolds number in this region than does the friction-factor. It is suspected that at least two mechanisms are
effective in this range- turbulent/or eddy-diffusivity, and "displacement" mixing; since the relative effects of the two mechanisms are probably varying in importance, a quantittative analysis would be difficult, even were it possible to predict the effect of one mechanism alone, which it is not. The fact that the simplified "geometrical" displacement co-efficient derived in Appendix B gives an approximation to the observed results at n :
low rates of flow may or may not be significant. (Graph VI shows a plot of the values of D predicted by this expression for varying values of the Reynolds number; taking $F=0.36, p=1, \mu=0.0125$ passes , the relationship has the form $D=0,00065\left(R_{e}\right)$). Further experiments at still lower rates of flow would be required to show whether the apparent agreement is coincidental. As far as could be observed in qualitative experiments, channelling, caused by fluctuations in the specific resistance to flow from point to point in the packing, is responsible for some of the mixing which took place. No quantitative theory of this effect is offered; it would be expected to lead to a "random-walk" type of distribution, but the value of the coefficient is difficult to estimate. It would not appear necessarily to lead to a coefficient of the same magnitude as that calculated for the "geometrical" coefficient.

The experimental results indicate that there is probably a mixing-effect even when the flow-velocity is so low (i.e. Reynolds' number less than 5) that flow is completely streamline. In such conditions point-concentrations would be expected to vary abruptly between zero and the original indicator concentration; the"mixing" would consist in the scattering of filaments of the indicator across the tower. In a regularly-arranged bed of isometric particles channelling could presumably not occur. It would be interesting to investigate such a system at low Reynolds numbers. Comparison with Heat-Transfer Data. Since experiments on the transfer of heat in a packed tower through which a fluid is flowing are being carried out at the Institute at the moment, some remarks may be made on the bearing of the present work on the subject. The overall heat-transfer coefficient or apparent conductivity in a stream of gas passing through a packed tower is presumably due to three different types of mechanism -transfer due to the mass-transfer caused by the mechanism investigated in the present work;
nprmal thermal conductivity of the gas; and transfer of heat from gas to solid, conduction through the solid, and re-transfer to the gas beyond. The following expression includes a term for each mechanism:

$$
K^{\prime}=S p D+F K_{G}+\phi\left(K_{S}, F, v, p, \mu, p\right)
$$

where k is the overall apparent conductivity, D is the apparent diffusion coefficient as measured in the present work, ρ the density of the gas, and S its specific heat. F is the fractional free volume - also equal to the fraction of any plane free from solids and hence available for gaseous conductivity; $\oint\left(K_{s}\right.$, sk $)$ is a function of the conductivity of the material of which the packing is composed and of the velocity and physical properties of the gas.

Stadig (2/) has shown that for air at a Reynolds' number in the neighbourhood of 100 , the value of k is of the order of O.2 B.t.u / hr.-ft.- F., when the packing used was $\frac{1}{4}-i n$. Berl saddles. Using our value of D for Berl saddles at a comparable Reynolds' number, it is found that the first term is about $1 / 10$ of k^{\prime}, while $F k_{g}$ is about $1 / 40$ of k^{\prime}. Hence most of the transfer apparently takes place by the third mechanism - i.e. by the path gas-solid-gas.

VI CONCLUSIONS.
\qquad

VI CONCLUSIONS.

(a) Mixing, in the sense of scattering of elements of fluid through the packing, occurs over the entire range studied Reynolds' numbers from 10 to 110.
(b) The general form of the concentration-distributin in the tower at steady state was consistent with either the wilson diffusion equation or with the probability equation derived from the"random walk"theory. These lead to slightly different expressions, but under the conditions of the experiments the difference between the two was less than the experimental error.
(c) The apparent diffusion-coefficient so determinedincreases with flow-velocity and with the diameter of the particles. For spheres:

$$
\frac{D p}{\mu}=0.035(R e)^{1.4}
$$

over the range studied.
(d) The expression:

$$
D=0.042\left(\frac{\rho L v^{3}}{\Delta P}\right)\left(\frac{w \Delta P}{P^{2} L v^{3}}\right)^{0.2}
$$

which does not refer to particle diameter, correlates the single value obtained for Berl saddles reasonably well with those for spheres.
(e) The nature of the flow through the packing is considered to beviscous in some parts of the packing and turbulent in others over this range of Reynolds' numbers. Mixing is thought to be caused partly by local turbulence; partly by the divergences of flow caused by channeling (which is in turn caused by local fluctuations in the specific resistance to flow); and also, perhaps, partly by divergences caused fy when the stream divides to flow past packing-particles.
(f) The distribution of concentration of the indicator in
these experiments appeared to be discontinuous, particularly at the lower rates of flow, when it varied sharply from point to point; at higher rates turbulence seemed partially to even out these discontinuities. In all cases it was necessary to make and average many individual point meazurements to obtain reliable results. There appeared to be quite a marked change in the appearance of the stream leaving the packing for relatively small changes in Reynolds' number, when the latter was about 40.
(g) As long as the diameter of the tower is more than five or six times that of the particles, it is concluded that none of the characteristics of flow (e.g., pressure-gradient, apparent diffusion-coefficient) are affected by the ratio of the two.

VII RECOMENDATIONS FOR FUTUREWORK.

VII Recommendations for Future Work

Recommendations for future work will be made under the following heads -
(i) Variation of fluid properties and velocity.
(ii) Variation of packing.
(iii) Pressure-gradient measurements.
(iv) Elimination of air-bubbles from water.
(v) Qualitative experiments bearing on mechanism.
(vi) Improved methods of sampling.
(vii) Other modifications to apparatus.
(i) All the present work was carried out in the transition region between streamine and turbulent flow. It would be of interest to extend the measurements to the purely streamline and purely turbulent regions. The former requires an improved sampling technique, the latter various changes in the apparatus. The viscosity of the water might be altered considerably by adding small quantities of cellulose ethers. Finally the investigation should be extended to gases.
(ii) Further work on spheres of different sizes, on Berl saddles and on irregular particles is required, particularly to see whether the mixing can be correlated with the pressure gradient. It would be of interest to investigate the effect of changes in free volume in the case of a packing (such as Berl saddles) where this can be varied independently of other factors.
iii) Correlation with pressure gradient requires an improved technique for measuring the latter, with greater accuracy than the method used by the present authors. It may well be advisable to measure pressure-drops through considerably greater depths of packing.
(ivi) The formation of air bubbles on the packing may prove to be serious in some circumstances-e.g. when using a very fine packing. The trouble could be eliminated, it is thought, by giving the water from the taps no chance to warm up while on its way to, or in passage through, the tower. Thus the constant head tank and all pipes might be lagged, and the tower itself waterjacketed. The addition of a wetting agent to the water might prevent bubbles clinging to surfaces in the tower.
(v) The use of a two-dimensional transparent model might give some insight into the mechanism of the mixing process - e.g. cylindrical blocks between two sheets of glass, or standing upright in a shallow tray through which water flows. If cryolite crystals, which have the same refractive index as water, were used as the packing particles, it should be possible to see a good deal more of what is going on than when glass beads are used. (vi) As has been mentioned, point sampling is unsatisfactory, particularly at low Reynolds numbers, because of the point to point fluctuations in concentration. This means that a large number of samples must be taken and their concentrations averaged. It is suggested that area sampling be used. It has been shown that a standard probability distribution is followed; the integration of this expression over a circular area concentric with the in-jection-axis is simple. All that is required is a method of finding the mean concentration of indicator in the fluid flowing through a given circular cross-section. A suggested experimental arrangement is shown in Fig. XI. The diameter of the sampling-tube should be carefully chosen with regard to conditions so that approximately half the indicator flows through it, otherwise results will not be accurate.
(vii) If packing-particles of larger diameter than those used by the present authors are used, it would be advisable to construct a tower of greater diameter. To obtain reasonable results samples must be taken a good many packing-diameters from the injection point; on the other hand, samples must
be taken at cross-sections where the concentration at the wall is small compared to that at the centre. These two requirements will be incompatible if the packing diameter is more than about $1 / 10$ that of the tower. It may also be advisable, particularly when using packings of low specific resistance, to use a larger calming section at the bottom of the tower to ensure that flow is symmetrical. The container used for the purpose was felt to be too small to act efficiently at high rates of flow.

VIII AP PENDICES.

APPENDIX A

The Geometry of Spherical Packings and Derivation of a Geometrical mixing Coefficient.

If a mass of spheres of uniform size is placed in a glass vessel, it can be seen that the arrangement of the spheres is not regular. Tapping the vessel or running a rod through it increases the regularity of the packing on the lower parts of the wall and decreases the volume of the aggregate; however, it can be seen that the arrangement of the spheres in contact with the upper parts of the walls, and of the spheres at the surface, is far from regular. It appears that the system as a whole departs widely from any geometrically regular system of packing; experiments designed to find the free volume F indicated that the closeness of packing varies considerably with variations in the way in which the system is treated (e.g., tapped, stirred, rammed).

The spheremdiameter, d, and the fraction of the total volume not occupied by the substance of the spheres, F, are the important numerical characteriestics of a spherical packing. d, of course, is auite definite and constant. F, which may be expected to have an important influence on fluid flow through the packing is, as already remarked, dependent on various factors.

It is felt however that under the conditions of the experiment its value was essentially constant, since the packing was thoroughly stirred in situ under water between each run, so that the spheres may be assumed to have settled into their equilibrium position under much the same conditions each time.

Neglecting for the moment the effect of the wall of the confining vessel, we may regard the packing to be isotropic and uniform, in the mass. If the fraction of free volume is F, and the number of spheres in unit volume is N, we have

$$
F=1-\frac{1}{6} N \pi d^{3}
$$

Consider a plane drawn through the packing; the fraction of the area of this plane lying outside the spheres is A. Hence in a lamina of thickness $d h$, the free volume will be Adh. Thus in a finite volume composed of a very large number of such laminae, in each of which the free volumes Aah, the total free volume will be $\int_{0}^{\sim} A d h=A h$. Since the total volume will be h, we have

$$
F=\frac{A h}{h}=A
$$

i.e., the fractional free area in any plane is equal numerically to the fractional free volume of the mass.

By a similar argument it can be shown that if a straight line is drawn through the packing, the fraction of its length which lies outside the spheres is equal to F. Such a straight line will cut every sphere whose centre lies in a cylinder centered on the line and of diameter d (the sphere diameter). The volume of such a cylinder will be $\frac{\pi d^{2}}{4}$ units per unit length, and since there are N spheres per unit volume, and hence N sphere-centres per unit volume, the line will cut $\frac{N \pi d^{2}}{4}$ or $\frac{3(1-F)}{2 d}$ spheres per unit length.

Similarly, unit area of any plane cuts all the spheres lying in a volume of 2 d , which is $\underset{\sim}{2}(1,-\mathbb{F})$ spheres. πd^{2}

Furnas (1) argues that the effective free area for the flow of a fluid is not F. He concedes that the fractional free area of a plane drawn through the packing would be F, but argues that this is not the cross-section available for fluid flow, since" 'free area' is by no means all effective in allowing the passage of (fluid) as the bulk of the area is blocked by overlying pieces of solid material". He mentions, but does not reproduce, geometrical considerations which show the effective free area for spherical packings to be a fraction of F. The authors are unable to agree with his argument, so far as they understand it, and consider that
at any rate for smooth, non-re-entrant shapes such as spheres the free area must be taken as F.

Furnas devotes a good deal of attention to the effect of the wall of the confining veasel on the pressure-gradient--flow-rate relationship of the packing. There is a prima facie case for supposing that the effect of the wall is to increase the free volume in the layer of spheres immediately adjacent to it, and thus to offer a path of lower resistance than through the main body of the packing. Consider a layer of spheres resting on a plane; there is a considerable amount of free volume between the plane and the spheres. If now the surface of the plane were embossed with hemispherical humps, these would partially fill the spaces between the spheres and the plane, and reduce the free volume. This latter arrangement may be supposed to approximate more closely to the conditions in the body of the packing. However, as has already been mentioned, the spheres in contact with the walls tend to be more regularly arranged, as far as can be seen, than those in the body of the packing; under the conditions of our experighents, quite a close approach to hexagonal packing was attained over the major part of the towerwall. This would tend to reduce the free volume in the outer layer. A calculation has been made to find the free volume in a layer of thickness $d / 2$ adjacent to a plane on which spheres of diameter d are lying in hexa-
goal (i.e., closest possible) packing (see Fig.I); The value of F in this layer is about 0.4 , and since the value of F in the body of the packing is about 0.36 , the difference is not great. More will be said in Appendix B on this subject in relation to flow. A number of experiments were carried out to find the overall free volume in packing confined in of various shapes and sizes wall area which the ratio -wow------ varied widely, with a
total volume view to extrapolating to zero value of this ratio to find the value of F in the body of the packing. The earlier experiments appeared to show a trend of the type which would be expected--i.e., F decreased as the proportion of wall area to volume of the vessel decreased. At this time, however, the effect of the treatment of the packing on F was not fully realized. A later set of experiments, conducted in cylindrical vessels, in which the packing was consolidated under water to a constant volume by a standardized method of ramming before F was determined, showed that the value of F was substantially constant at $0.36-0.37$ provided that the diameter of the containing vessel was more than say five times greater than the diameter of the packing.

It is considered that the increase of free volume above a certain value of the diameter ratio is

> Table

Free Volumes for Glass Spheres in Cylindrical Towers.

Particle diameter
Tower diameter

.247	0.42
.225	0.43
.150	0.37
.130	0.36
.064	0.36
.043	0.36

due to an effect on the mode of packing in the interior of the vessel, rather than to an excess of voids in the immediate vicinity of the wall.

The 11 mm . spheres (nominal diameter $3 / 8$ ins.) gave a value of F of 0.4 ; ratio of particle to tower diameter was $0 \cdot 12$. But the particles were not entirely uniform in size and shape, which may account for this high value.

The free volume was determined in one of two ways:
(a) Some water was poured into a cyindrical vessel, some packing added and consolidated, and the apparent volume, V_{l}, of the packed region and total volume V_{2}, of packing and water measured. More packing was then added and consolidated as described; the apparent (V_{3}) and totaf $\left(V_{4}\right)$ volumes were noted again. Then.:-

$$
F=1-\frac{V_{4}-V_{2}}{V_{3}-V_{1}}
$$

(b) Packing was consolidated under water in situ in the tower of the apparatus. Water was run off from a tap at the bottom of the tower until the surface stood at a certain height in the tower; a measured volume of water was then run off, and the fall in height of the water surface was observed.

Both these methods eliminate the "end-effects" which might be expected at the bottom and top of the vessel.

Derivation of a "Geometrical" Mixing Coefficient.
Preliminary consideration of the mixing of fluids in a bed of spheres led to the idea of basing a derivation of a "mixing-coefficient" on premises which, while probably unrealistic, might yet give an idea of the order of magnitude of the actual co-efficient under limiting conditions. The derivation is based on the idea of the splitting of streams in streamline motion through the bed--discussed in the Introduction and illustrated in Figure IV (ii).

Consider an inelastic particle of negligible size falling through a bed of spheres whose diameter is d. The particle will move in a vertical straight line until it strikes a sphere; it will then "skirt" the
sphere in a great circle path (taking the shortest route to the edge) until it rolls off and falls in a straight line to the next sphere.

It has been shown earlier in this appendix that a straight line drawn through a bed of spheres cuts

3_- (1_-F) spheres per unit length, where F is the
fractional free volume. It was also shown that the fraction of the length lying outside the spheres is F. Hence the mean free path between spheres is $\frac{2 F}{3(1-F)}$.

A little consideration will show that the peth of the particle considered can cut no new sphere while it is skirting a sphere, whereas a straight line drawn through the packing can cut no new sphere while it is "inside" a sphere. Hence

Free_length_of straight_line = total_lengtholength_inside_spheres total length total length

$$
=\left\lvert\, \frac{\text { length insidespheres }}{\text { total length }}\right.
$$

path
dist. dropped in skirting/
Free_lengthoof particle_path = Total_vertical_dista-verticol_L Total vertical dist. dropped

As Figure II is intended to convey, if a vertical straight line strikes a sphere at a certain spot, the length of the line lying within the sphere will be twice the vertical distance dropped by the particle, if it strikes the same spot, while it is skirting the sphere. Since a straight line cuts $\frac{3}{2} \cdot(\underline{1}-\mathbb{F})$ spheres per unit length, and $(1-F)$ of of its length lies inside the spheres, the mean length of its path through a sphere is $-\frac{2 d}{3}$. Hence the mean vertical distance dropped by the particle while skirting a sphere is half of this, or $\frac{d}{3}$. Since the number of spheres struck by the particle per unit length of free vertical path is the same as the number cut by the straight line per unit length of free path, it can easily be shown that the number of spheres struck by the particle in unit length of total vertical path is $\frac{3(1-F-F)}{d(1+F)}$.

The projection of a sphere onto a horizontal
plane is a circle of diameter d, and the perticle may fall anywhere within this circle. The probability that it fells at a distance r from the centre of the circle is $-\frac{8 \pi r}{\pi r} \frac{d r}{2}$ or $-\frac{8 r_{2}}{\frac{d}{2}} \frac{d r}{2}$, hence the average value of the distances from the centre for all possible points of impact is $\int_{0}^{d / 2} r^{\frac{8 r}{d} \frac{d}{2}}=\frac{8}{d^{2}} \int_{0}^{d / 2} r^{2} d r=\frac{d}{3}$

Hence $\frac{d}{6}$ is the mean horizontal displacement undergone by the particle per impact. Now suppose that the particle moves at a constant vertical velocity u. In unit time it will undergo $\frac{3 \omega(1-F)}{d(1+F)}$ horizontal displacements of mean value $\frac{d}{3}$. These displacements will be completely random in direction, in that the direction of any one will be unrelated to that preceding it. Under these circumstances we can apply the "random walk" theory to calculate the mean net horizontal displacement of the particle in a given time. (The theory is discussed in Kennard's "Kinetic Theory of Gases") () The expression for displacements occurring in three dimensions (as in a gas) is

$$
\frac{\bar{x}^{2}}{t}=2\left(\frac{l}{\sqrt{3}}\right)^{2} 2
$$

where \bar{X}^{2} is the mean square of the net displacement, \mathcal{L} is the mean length of one displacement, the time, and Z the frequency of displacements. In a gas, an individual displacement may be in any direction in space, and $\frac{l}{\sqrt{3}}$ is the mean of the projections of the individual displacements onto a single straight line. The displacements which we are considering take place horizontally only, so that the mean of the projections of individual displacements onto a given line will be $\frac{l}{\sqrt{2}}, l$ having the value already calculated, $\frac{d}{6}$. Hence for the particle under consideration,

$$
\frac{\bar{x}^{2}}{t}=2\left(\frac{d}{6 \sqrt{2}}\right)^{2} z
$$

Since Z had been shown to be
,

$$
\begin{aligned}
& \frac{3 u(1-F)}{d(1+F)} \\
& -=\frac{d u(1-F)}{12(1+F)}
\end{aligned}
$$

If a large number of particles move through the bed in the way described, the result will be that a process analogous to diffusion will take place horizontally. It can be shown (see Kennard's "Kinetic Theory of Gases") (22) that the diffusion coefficient D will be

$$
y=\frac{\bar{x}^{2}}{2 t}
$$

hence for the system considered

$$
D=\frac{d u(1-F)}{24(1+F)}
$$

for horizontal diffusion.
For particles of other than spherical shape, a similar (but more difficult) treatment would also give an expression of the form

$$
D=K \times d u
$$

where K is a constant.
The free volume of the $4-\mathrm{mm}$. and $6-\mathrm{mm}$. spheres used in this work, $F=0.37$. Substituting in the expression given above $u=F v$ and $(R e)=d v \rho / \mu$, we have

$$
D=\frac{d v}{F} \cdot \frac{1}{24} \cdot\left(\frac{1-F)}{1+F}=\frac{1}{F} \cdot \frac{1}{24} \cdot\left(\frac{1-F}{1+F}\right) \cdot \frac{\mu}{P}(\operatorname{Re})\right.
$$

Substituting $F=0.37$, we have $D=0.00065$ (Re). This expression is plotted on Graph VI, where it is compared with the line obtained by extrapolating the experimental plot of D vs. (Re).

APPENDIX B

Fluid Flow through Packed Towers.

The treatment of fluid flow through beds of solids is much more complicated than for that through geometrically simple conduits, and the correlation of experimental data has been at the best semi-empirical, with the theoretical background of the expressions open to some doubt. Three papers by Furnas (1), Chilton and Colburn (2) and Meyer and Work (3) present most of what is known on the subject. A summary is given in Perry's "Chemical Engineer's Handbook", (q) .

The basis of the correlation equations is a modified Reynold's Number (hereafter referred to simply as the Reynold's number):

$$
\left(R_{e}\right)=\frac{d v p}{\mu}
$$

and the Fanning Equation:

$$
\Delta P / L=\frac{2 f v^{2} P}{d}
$$

where $d=$ particle diameter (actual or fictitious), $v=$ superficial fluid velocity--i.e., linear rate of flow if packing were removed from containing tower.

Consider a fluid flowing through a bed of
spheres at a velocity so low that turbulence is ruled out; and follow a single particle in the fluid through the bedl At any instant it can be pictured as flowing through a conduit of irregular and changing cross-section.

If it is near the center of such a conduit it will be travelling faster than if it is near the wall; a section through the bed would show a number of such "conduits", where flow is brisk, surrounded by zones of decreasing velocity, with stagnancy at the surfaces of the spheres. However, the maximum velocity through all these conduits is not equal; fluctuations in the arrangement of the spheres provide "channels", which are conduits whose cross-sections are by chance larger than the average for a considerable distance. These channels are not continuous throughout the depth of the bed (unless flowrates are high enough to lift the spheres), but peter out and are replaced by others in other parts of the cross-section. In any cross-section, therefore, there are regions in which the maximum velocity is much higher than the average, and others in which it is much less. As the location of these channels varies from section to section, the particle will wander with respect to its original axis of flow as it passes through the packing. Moreover, two particles which are originally close together may become widely separated in this fashion. This type of behavior is in marked contrast to that of a fluid flowing past an isolated sphere in streamline motion. The flow -paths of particles of fluid in this latter. case are shown in Figure IV (1); it can be seen that any particle has the same situation with respect to the axis of the sphere before and after the encounter, so
that no displacement or splitting of the stream can occur. Mixing by channeling does not exclude mixing by the mechanism illustrated in Figure IV (ii) and discussed in the Introduction. -ie "displacement "mixing.

As a further consequence of channeling, it may occur that a stream in a conduit reaches a relatively high velocity and then debouches into a region where the velocity is low. As a result, turbulence may be set up locally even when flow in most regions is streamline.

This picture of the nature of the flow through the packing is supported by some qualitative experiments carried out with $6-\mathrm{mm}$. glass spheres in an 8 -cm. glass tube. A layer of the spheres 4 or 5 diameters thick was supported on a wire gauze, and water was run through the tube at such a velocity that flow in the open part of the tube was steamline. This was confirmed by injecting a solution of methylene blue through a capillary tube beneath the layer of packing; the linear rate of injection was less than that of flow, so that the dye was drawn out into a smooth filament. The following phonomen were observed:
(a) On several occasions the filament, after broadening to a ribbon a few millimetres wide, split into two distinct parts (with apparently no colour in the intervening region), which then diverged and entered the
packing at points some 6-8 Gall diameters apart, well off the axis of the tube.
(b) Filaments which entered the packing emerged from the top either distorted into broad and irregular sheets, or split into several streams; the edges were sharp, and remained so up the tube. The extreme distance apart of any two parts of the visible colour was not more than 3-4 sphere diameters.
(c) The coloured streams emerging from the top of the packing did not emerge in a direction parallel to the axis of the tube, but inclined at small and various angles to it. At steady state an emergent filament appeared as a stationary line of a curved or spiral shape, tending to straighten out higher up the tube.
(d) When the coloured illament first entered the packing, it could be seen to accelerate, and the emergent streams could be seen to be moving considerable faster than the average velocity of the water in the open tube. Under some conditions, turbulence could be seen in the shape of very fine, uniform ripples at the boundary between an emergent filament and the relatively stagnant fluid surrounding it.

Figure V shows a typical situation.
When the rate of flow was increased to the point at which the flow in the open tube was turbulent, the filament leaving the injector tube was considerably
shredded and contorted before reaching the packing. Instead of passing steadily through one point in the bed, it oscillated rapidly over the whole surface. In the course of routine experiments it was observed that at higher rates of flow some kind of oscillation or fluttering of the coloured fluid was going on in the packing near the injection-point. There was a marked change in appearance of the fluid having the top of the packing as the velocity was increased. At low velocities the colour emerged in streaks or filaments -- i.e., there were discontinuities in the concentration; at high velcities the colour distribution from point to point was continuous. The change occurred at a Reynold's number (calculated for the packing) in the neighborhood of 40 . When using ll-mm, white alumina spheres, observations could be made on filaments of colour which channeling brought to the wall of the tube. I_{t} could be seen that providing Re was not too high, an almost steady state was reached, the position of a filament hardly changing, except for local turbulence in spots. The path of such a filament was very devious. It appeared to be governed by channeling effects, rather than by purely geometrical displacements, such as those considered in Appendix A.

Whatever the exact nature of the mechanism of flow through pacing, it is generally admitted that there is no abrupt transition from streamline to turbulent
motion. For spheres the flow is entirely streamline below Reynolds Number $=5$ (3); the pressure-gradient through the packing is then proportional to the velocity-1.e., the friction frctor f in the Fanning equation is inversely proportional to the Reynolds Number. At sufficiently high Reynolds numbers (the lower limit is not accurately known), flow appears to become entirely turbulent, and I is proportional to the (-0.25) power of Reynolds Number. There is a transition region where the exponential relationship between f and Re varies continuously (see Graph I and Perry (9))

All the experiments conducted by us were probably in the transtion region;--values of R_{e} (Reynolds Number) lay between 10 and $1 / 0$.

It is suggested that the behaviour of the coloured filament immediately before and after entering the packing in the experiments described shows in an exaggerated form the processes occurring within the packing-mplitting by channeling, and localised turbulence which may lead to eddy-mixing. It cannot be said that this picture of the flow gives any reason to suppose that the geometrical mixing co-efficient derived in Appendix A will correspond to the facts; however, experiments show this to be actually a fair approximation for the value of the comefficient observed at low rates of flow (see Graph VI).

As regards the influence of the wall of the confining vessel on the distribution of the elements of the packing, and hence on fluid flow, it has already been stated in Appendix A that, for the case of spheres, both geometrical considerations and actual measurements of F indicate that the free volume in the part of the packing adjacent to the wall is equal or very nearly equal to that in the body of the packing. Furnas (1) derived a semi-empirical expression for a co-efficient A to be used in a modified form of the Fanning equation:

$$
\frac{\Delta P}{L}=\frac{f^{\prime} A_{f} \cdot v^{2} \cdot P}{2 d}
$$

where f^{\prime} is supposed to be a factor which is the same for all sizes of particle at a given Reynolds Number, while A_{f} is a function of the ratio of the particle diameter to the tube diameter, which corrects for the influence of the tube wall on the free volume of the packing (Perry (9)).

The authors'experiments on free volume, already referred to, indicated that the overall free volume is constant as long as the tube diameter is at least 5 times as great as the particle diameter. Moreover, both White (7) and Uchida and Fujita (8) found that the pressure-drop was uninfluenced by the ratio of particle diameter to tube diameter as long as this was less than $1 / 6$. Whe acithors Gried to perform a critical experiment on this question. The tower of the apparatus
was packed normally with 6-mm. glass spheres, water was run through at an ascertained velocity, and the pressuregradient through the packing observed. A thin sheet of metal was then rolled into a rough cylinder or spiral scroll, and thrast co-axially into the packing in the tower. The area of the metal surface (counting both sides) was about eaual to the area of the tower wall in contact with the paoking; if, therefore, the layer of packing immediately adjacent to a flat surface offers a path of lower specific resistance to the flow of liquid than the body of the packing, one would have expected the pressure-gradient to be lower, at the same velocity, than before. Unfortunately, owing to the uncertainty involved in the pressure-gradient measurements (see Appendix E), all that can be said is that if there was an effect it was about of the same order of magnitude as the experimental uncertainty. One would have expected, following Furnas(1), that the pressure through the packing would drop by some $0.1-0.2$ inches of water, but unfortunately the measurements were not reproducible to a greater accuracy than this.

Chilton and Colburn (2) used the factor A_{f} given by Furnas in correlating their experimental results and those of previous workers. As far as their own data are concerned, we have remplotted them without reference to ${ }^{\circ}$ Af--i.e., plotting f, as calculated from the normal Fanning equation, against the Reynolds Number. It is found
that for those experiments in which the ratio of particle diameter to tube diameter was less than $1 / 6$, the correlation obtained was as good as, or better than, that obtained when using A_{f}; when this ratio was greater than $1 / 5$, the friction factor was markedly low.

Finally, the authors have measured pressuregradients and calculated from them friction-factors (without using Af) for $4-\mathrm{mm}$. and $6-\mathrm{mm}$. beads in a tower 9 cms . diameter. The friction-factors for given Reynolds' numbers for the two sizes are very close together (see Graph I); it is true that the values of f for the smaller size appear to be some 5% higher than for the larger size, but in view of the errors in the pressure-gradient measurements, it is doubffu/whether this is significant.

To sum up, our own free-volume measurements, Chillon and Colburn's data, and the opinions of other investigators appear to lead to the conclusion that as long as the diameter of the confining tube is 5 or 6 times as great as the diameter of the packing particles, variations in the former will not affect the flow through the packing.

This implies that in these experiments the lInear rate of flow was substantially constant, in the mean, in all parts of the cross-section of the tower. The matter has been stressed because it is of some importance in correlating any measurements concerned with flow
through packings. In particular, the equations the authors used to calculate the diffusion coefficients from concentration measurements were derived on the assumpdion that the mean linear rate of flow is uniform across the tower. Were this not so, a correction would have to be applied in order to calculate the true mean linear velocity from the volumetric rate of flow.

The treatment of nonspherical particles is more difficult, and it is necessary to define their diameter arbitrarily.

White (7) has correlated pressure-drop data for Raschig Rings and Beryl saddles in the following way: for a given shape of packing, an empirical relationship is drawn up between the nominal diameter d_{p} of the particles and a corrected diameter d_{p} / f_{A}. The nominal diameter is used to calculate the Reynold's number, and then the friction factor corresponding to this is read off the Chilton-Colburn curve. The pressure-gradient can then be calculated by using the Fanning equation, with this value of the friction factor, and α_{p} / f_{A} in place of the diameter. In other words, the pressuregradient for an irregular shape is equal to that for spheres at the same Re (using nominal diameter of particles), multiplied by the factor (f_{A}); or we may say that the friction factor for an irregular shape is that for spheres at the same Re, divided by $\left(f_{A}\right)$ using the nominal particle diameter throughout. The data for Beryl saddles
are scanty, but for rings the procedure is justified in that the f vs. Re curve "breaks" at the same value of Re as for spheres. This may not be so for Berle saddles; White's data are all in the turbulent region and do not cover the "break". (See also the data on 1/4-inch Beryl saddles, plotted on Graph II.) Formulae for for rings and saddles are given in Perry (9).

It would be more satisfactory, when dealing with nonspherical particles, to use a correlating expression containing no reference to particle diameter, and an attempt has been made to derive one (see "Correlation of Results").

If the free volume F can vary independently of the particle shape, then F must also be introduced into the correlating expressions. The subject was studied by Meyer and Work (3); see also Perry (9). This problem, however, did not occur in this work.

Appendix 0
Derivation of "Probability" Equation for computation of Diffusion
Coefficient from Concentration Measurements. Comparison with Wilson

Diffusion Equation

In the course of flow through a packing, mixing may be expected to to occur in several ways--e.g. molecular diffusion, eddy diffusion, and mixing caused by the geometrical characteristics of the packing. These are all alike in that they are caused by displacements of olegents of the fluid which are large in number, random in direction, and small compared to the mean total displacements to be measured. The fictiveness of these various processes in causing mixing depends on the frequency and average length of these random displacements; in the case of a liquid, the mean free path of a molecule in thermal motion is so small that prolecular diffusion plays a negligible part under under the conditions of experiment.

The distribution of a number of particles which, starting from a Common Goitre, have undergone displacements of the kind described (random, numerous, small) Is given by the "normal probability function". This function expresses the probability of a particle which was originally at the origin being now in a plane which cuts the X - axis perpendicularly at $\mathrm{x}:$ - -

$$
P_{x}=\frac{1}{\sqrt{2 \pi \bar{x}^{2}}} e^{-x^{2} / 2 \bar{x}^{2}} \cdot d x
$$

where \bar{x}^{2} is the mean square of the x-coordinates of all the particles. Similarly:

$$
P_{y}=\frac{1}{\sqrt{2 \pi \bar{y}^{2}}} e^{-y^{2} / 2 \bar{y}^{2}} \cdot d y
$$

for displacement along the y - coordinate. This if displacement along the x \& y coordinates only is considered, \& if we take \bar{x}^{2} equal to $\frac{2}{2}$ at any time (ie. diffusion isotropic) we have

$$
\cdot P_{x, y}=\frac{1}{2 \pi \bar{x}^{2}} e^{-r^{2} / 2 \bar{x}^{2}} \cdot d x \cdot d y
$$

there

$$
r^{2}=x^{2}+y^{2}
$$

and FXY is the Probability of the $X \& F$ coordinates having simultaneously the values (x, y).

Consider a very thin stream of an indicator fed into the axis of a stream of moving fluid, \& suppose for the moment that diffusion takes place only in directions at right-angles to the direction of flow. Then the above expression gives the probability of a given molecule of the indicator being at a specified point at a distance r from the axis, when \bar{X}^{2} refers to all the indicator molecules entering the stream at the same instant.

It can be shown (see Kennard(22)) that the co-efficientiof difffusion, D, will be given by the expression

$$
D=\frac{\bar{x}^{2}}{2 t}
$$

where f^{\prime} is the time which has elapsed since the indicator entered the stream. (The validity of this expression is discussed later in this appendix). Hence

$$
P_{r}=\frac{1}{4 \pi L D} \cdot e^{-r 2 / 4 t D} \cdot d x \cdot d y
$$

for the probability of a particle being at a specified point distant r from the axis, in a plane distant $u t$ from the point of entry, where
$u=$ linear flow velocity (see fig. X)

Fig. X

Since all the indicator molecules entering the stream at a given instant reach this plane at the same time, the expression for P_{r} also gives the fraction of the total number of indicator molecules entering the stream which pass through the differential area $d x$. dy. Thus if N molecules enter in unit time, then N_{r} pass through this area in unit time. For the purposes of measurement, a sampling tube of small but finite cross-section a is used; it is assumed that P_{r} is effectively constant over this area.

In any plane drawn through the packing perpendicular to the direction of flow the free area unoccupied by the subtance of the packing is a fraction F of the total. The average linear velocity across the plane will then be ∇ / f, where $V=V / A, V$ being the volumetric rate of flow, \& A the total area. Thus in unit time a volume av/F of fluid flows through an element a of free area. Now P_{r} expresses the probability of a particle being in a given overall area of the crosssection; since some of this area is occupied by the substance of the packing, \& the particle cannot be in this part, the probability of it being in in an equal element of free area is P_{r} / F. Thus the total number of indicator molecules passing through a small element a of free area in unit time is $\frac{\mathrm{NaPr}}{\mathrm{Fdx}}$, and their concentration $\overline{F d x} . d y$
is therefore

$$
C=\frac{N P_{r}}{v \cdot d x \cdot d y}=\frac{N}{4 \pi t D v}, e^{-r^{2} / 4 t D}
$$

If the sampling - point is situated in a plane distant X from the point at which the indicator enters,

$$
x=u t=\frac{v t}{F}
$$

also $N=C^{*} \nabla$, where C^{*} is the average concentration of indicator in the entire eluid stream. Hence

$$
\frac{C x}{C^{*}}=\frac{V}{4 \pi F D} e^{-r^{2} v / 4 F D x}
$$

It can be seen from the derivation of this expression that if sampling is continued at a constint rate for a finite time, \& if C is the mean concentration of the sample so collected, while C^{*} is the mean concentration of the efluent over the same period; then providing all the cther factors remain constant, variations in the rate of injection of indicator are inmaterial.

This expression is only valid so long as diffusion in directions parallel to the axis of flow can be neglected without error. Otherwise, similar reasoning leads to the expression:

$$
\frac{c}{c^{*}}=\int_{\xi=0}^{\xi=\infty} \frac{E V}{v^{2}}\left(\frac{v}{4 \pi F D \xi}\right)^{3 / 2} e^{-\frac{\left[r^{2}+(x-\xi)^{2}\right]}{4 F D \xi}} \cdot d \xi
$$

However, the simpler expression seems justified by the experimental results.

Previous workers (4.5) have employed; the Wilson \&quation for the evaluation of D. This equation was originallyderived (6) for the conduction of heat from a point source through an isotropic stream of moving fluid, but owning to the mathematical identity between the fundamental
equations for heat transfer \& for diffusion, can be applied with equal validity to the latter. Like the probability equation, it neglects the effect of diffusion in the direction of flow.

For an open tube, the Wilson Equation has the form:

$$
C=\frac{N}{4 \pi D \sqrt{x^{2}+r^{2}}} e^{\frac{-u\left(\sqrt{x^{2}+r^{2}}-x\right)}{2 D}}
$$

Cowrecting for the space effect of the packing \& transforming by multiplying top \& bottom of the exponent by $\left(\sqrt{x^{2}+r^{2}}+x\right)$, we have

$$
\begin{array}{ll}
C=\frac{N}{4 \pi F D \sqrt{x^{2}+r^{2}}} e^{-v r^{2} / 2 F D\left(\sqrt{x^{2}+r^{2}}+x\right)} \\
G \quad & \frac{C \sqrt{x^{2}+r^{2}}}{C *}=\frac{V}{4 \pi F D} e^{-v r^{2} / 2 F D\left(\sqrt{x^{2}+r^{2}}+x\right)}
\end{array}
$$

This form show that the expression is identical with the Probability \#quation when $r=0$, \& that it will approximate it closely when $r^{2} \ll x^{2}$ Since under our experimental conditions ${ }^{2}$ was never more than $1 / 10$ of x^{2} (\& usually much less) $\sqrt{x^{2}+r^{2}}$, was never more than $x \sqrt{1 \cdot 1}$, or 1.05 times x. Hence the maximum variation in the co-efficients would be 5%, in the expaments 2.5%, as between the two expressions. The experimental error was greater than this, so that no comparison can be made between the two.

The Probability Equation was used because its derivation was more fully understood, because it appears to correspond to the mechanism of the mixing process, \& because it is mathematically somewhat simpler than the Wilson Equation (e.g. it can be easily integrated). Assuming that both the Wilson Equation \& the Probability Equation have been derived from their starting assumptions without error, the dism crepancy can only be due to the non-validity of the expression:

$$
D=\frac{\bar{x}^{2}}{2 t}
$$

where $\overline{\mathrm{x}}^{2}$ is the mean square displacement undergone by an element of fluid in time t. It was by using this expression to substitute for \bar{x}^{2} in the"random-walk" distribution that D was introduced into the probability equation. The derivation of this expression is given in Kennard (22). In the course of the derivation it is tacitly assumed that the concentration gradient in any direction is constant; since, in fact, in the case under consideration the gradient varies in all three dimensions,a discrepancy will arise from this assumption, and D in the diffusion equation is not, in fact, equivalent to $x^{2} / 2 t$ in the random walk theory in such a case.

Since the probability equabion has been used throughout, D is defined as $\bar{x}^{2} / 2 t$; however, a numerically equal value would have been obtained had the Wilson equation been used, and D defined accordingly. More accurate experiments would be required to determine which expression more nearly corresponds to the facts; it is clear that neither can be more than an approximation, since both lead to finite values of the concentration at all distances from the axis, while practically the concentration falls to zero at a finite distance. Moreover, both are continuous functions, while actual diffusion of any kind involves the movement of discrete elements of matter. A general survey of the validity of the diffusion and proability treatments is given in the following notes.
(a) The diffusion equation is an arbitrary or empirical expression with no theoretical basis. The expression which it gives for the rate of transfer at a point refers only to the con-centration-gradients at that point, and not to conditions in other parts of the system.
(b) The probability equation is derived from the random walk theory, and will be strictly true when transfer is due to random displacements of the type specified in that theory.
(c) For the special case when the concentration-gradient on any axis in the system is constant along that axis (extrapolated to infinity), it has been shown by Einstein that the probability and diffusion-equations are identical in form, and that D in the former is then equivalent to $\bar{x}^{2} / 2 t$ in the latter.
(d) However, for the general case the two are not equivalent; it is clear that they cannot be, since the diffusion equation refers only to conditions at a point, while to express in terms of the random walk theory the quantity of material crossing a given plane requires a knowledge of the concentration of the substance at all distances away from the plane in both directions. (The fact that z^{2} in the Wilson equation, for instance, the difference is not great is because in fact it is those parts of the system which are close to the plane in question which contribute most to the transfer across it; the error in assuming the concentration-gradient constant over a short distance will not be great, while at greater distances the contribution to the total will be so small that large errors in assessing this contribution are of little importance).
(e) Thus the diffusion equation is only strictly applicable in cases where the physical conditions are such that the con-
centration-gradient is constant along any given axis. It is clear that this can never be the case when a solution containing a finite concentration of the diffusing substance is injected into the pure solvent.

If the arrangement used in the present work were replaced, for instance, by that shown above, indicator solution being injected from a linear source, and the direction of diffusion being limited to the x-axis, it is clear that the concentrationgradient on the latter would vary with x. The diffusion and probability distribution functions would still be of different forms; in other words, the discrepancy is not due to the geometrical conditions imposed by the point-injection, radial diffusion arrangenment used in the present work.

Appendix D. Calibration of Flow Manometer and Colorimetric Standards.

Flow Manometer. Water was run through the apparatus and through the manometer until it was certain that no air was left in the tubes. The constant-head tank was allowed to fill until overflow was constant; the flow-rate was then adjusted to a chosen value by the control-valve. A reading of the pressure-drop across the orifice was then taken, and the flow-rate obtained by timing the collection of a measured volume (about $10,000 \mathrm{cc}$) of water as it over flowed from the tower. A second reading of the manometer was then taken; if it differed from the first, the two were averaged. When the volumetric rate of flow was plotted against the manometer head on log-log paper, the slope was exactly $1 / 2$. The plot was is shown in Graph 22.

Colorimetric Standards. A portion of the original indicator solution made up ($24.80 \mathrm{gms} /$ litre) was diluted 1,000 times, and used as a reference standard (referred to in the lab. notes as $s / 1000$). Methylene blue solutions of various other known concentrations were then compared.with the s/1000 in the Dubosca colorimeter. The color-densities of the various solutions were plotted against their concentrations, thus giving alcurve from which the concentration of any solution of known color-density could be determined. It was noticed that it was advisable to compare solutions which were as close as possible in concentration, as the color appeared to vary with the concentration. Tap-water was used as the diluent throughout. The color-density/concentration curves are given in graphs 20 and 21.

Appendix E Addittional Notes on Experimental Technique.

Packings. Most of the work was done with $4-m m$. and $6-\mathrm{mm}$. glass heads.
These were cleaned with chromic acid before starting the experiments to discourage air-bubbles from clinging to them.

It is necessary to treat the packing in a standardised way in order to keep the free: volume constant. In this work, the glass beads were stirred under water with a thin rod after every run, and measurements of free volume and pressure-gradient were made with the packing in a similarstate of consolidation.

The 3/8-in. (nominal diameter) spheres and $\frac{1}{4}-1 n$. Berl saddes could not be stirred in this way. They were dumped into the tower when it was full of water and lightly tamped down.

The alumina spheres as received were not uniform in shape or size., so they were sorted by hand to remove the more obviously deformed or outsize ones. The volume of a known number of the sorted spheres was then measured by displacement, and the mean diameter calculated. It was found to be 11 mm . (0.43 in) which is not very close to the nominal diameter of $3 / 8$ (0.375) inch. Methylene Blue Solutions. It was found advisable to warm the solution when making it up, to make certain that all the dye dissolved. It dissolves slowly, and it is difficult to see whether any solid is left. The exact concentration of the indicator solution need. not be known, since it does not enter into the calculation. A solution containing $25-30 \mathrm{gms} / \mathrm{litre}$ was used; this approaching saturation, and as will be explained later, the highest practicable concentration was required.

A concentration of about $1 / 1000$ of this was found to be the easiest t to estimate accurately and quickly. When less than $\frac{1}{4}$ of this concent ration, the accuracy of the determination is poor, and when more than 2 or 3 times this, the sample must be diluted to give accurate results.

For a superficial flow velocity $v=1 \mathrm{~cm} / \mathrm{sec}$, using a'packing of spheres, the true mean Einear velocity through the packing is about $3 \mathrm{ck} / \mathrm{sec} .$, or the the volumetric rate of thew $70 \mathrm{cc} / \mathrm{sec}$. Since the diameter of the injector tube was approximately $.08 \mathrm{~cm} .$, injection of indicator solution at the true linear flow, velacity (as was originally considered desirable) would give an effluent solution with a concentration equal to

$$
\frac{3 \times \pi \times(.04)^{2}}{70} \text {; on about .002 of the }
$$

indicator solution. Since the concentration of the effluent gives an idea of the range of concentration of the samples which will have to be analyze a, and since the concentration of the methylene blue solusdion can not be greatly increased, it is necessary to inject the indicator solution at a higher velocity: (say 2-5 times as fast) than that of the main stream if samples of a suitable range of concentration are to be obtained. No significant variation in the observable results was noticed when the injection rate was varied, so that the procedure was probably permissible.

Apparatus. The nanometers used to meter the flow are shown in Fig. VII. There was a tendency for air to collect in the tubes leading from the metering orifice to the namometer, so the latter were so constructed to allow water to be run through them and flush out air
before readings were taken. In the case of the water manometer, used for flow rates up to about $150 \mathrm{cc} / \mathrm{se}$. , water was allowed to run out of the right-hand limb, the lower stop-cock was then closed, and the puffer used to force the water levels over into the two left-hand limbs (slugs of air which formed in the left-hand limbs in the process could be removed by raising and lowering the levels by alternately puffing in air and allowing it to escape). The upper stop-cock was then closed, to prevent air being sucked in through the puffer by the negative pressure developed beneath the metering orifice when the water valve was wide open. The mercury manometer, used only at the highest attainable flow-rates, was so designed that when the mercury reservoir was lowered, water could be run through both limbs and out of the lower stop-cock.

The steel capillary tubes used to collect the samples were very flexible, and in order to fix the position of their open ends with er tainty it was necessary to attach them to a rigid frame, which is shown in Fig. IX. It was considered desirable for the liquid leaving the top of the tower to overflow symmetrically, at any rate at low flow-velocities, in order not to distort the flow in the tower. To ensure this, a 6-inch high metal extension was attached to the top of the glass tower, and 6 equally-spaced $1 / 10$ inch holes were drilled in it, in a horizontal plane some 4 inches from the top. While at higher rates of flow the water overflowed at the top of this extension-piece, at lower rates it flowed exclusively through the six holes; the flow through each was equal and practically unaffected by any small tilt of the tower, because this would produce only a small fractional change in the head above any one hole.

Abstract

The connections between the metal container at the bottom of the tower, the tower itself, and the extension piece at the top were secured and made leak-proof by the use of rim cement, and by a plastic waterproofing material which was forced tightly into the joint after assembly.

Analysis of Runs 76-83 inclusive. All concentrations of the samples are expressed, as was the general case throughout, with reference to a standard solution of $\frac{1}{1000}$ the concentration of the original indicator solution injected. The concentrations of the effluent and the samples were found as outlined in Section III (Procedure).

The general statement of the probability expression used throughout these analyses is of the form

$$
\frac{C x}{C^{*}}=\frac{V}{4 \pi F D} e^{-\varepsilon^{2} v / 4 F D x}
$$

where C Concentration of sample collected
C* Concentration of effluent liquid
x Axial distance between the injector capillary and sampling plane
V Volume of water flow c.c./sec.
F Free volume of the packing
D Diffusion coefficient $\mathrm{Cms}{ }^{2} / \mathrm{sec}$.
\mathbf{r} Radial sampling distance from axis of the tower
\checkmark Superficial flow velocity of water. Cms/sec.
The general approach is to plot $\log _{10} \frac{C x}{C^{*}} \quad V s . r^{2} / x \quad$ when the slope of the Ine is given by $-\frac{v}{9 \cdot 2 F D}$ and the intercept by $\log _{10} \frac{V}{4 \pi F D}$. The best line is drawn through the points obtained, consistent with satisfying the equation above. Upon averaging the individual results of Runs 76-83, Table A is obtained. Table B shows the results for the individual runs.

TABLE A

Run Numbers	$\begin{aligned} & \text { Tube } \\ & \text { Number } \end{aligned}$	$\begin{gathered} \frac{c x}{c^{*}} \\ \text { (average) } \end{gathered}$	$\begin{aligned} & \log \frac{C X}{C^{2}} \\ & \text { (average) } \end{aligned}$	$\frac{r^{2}}{x}$	Volumetric rate of flow $\text { (c.c. } / \mathrm{sec} \text {) }$	Superficial flow velocity \qquad CMS/sec
76-83	1	288	2.460	0	21.7	0.0314
	2	224	2.350	0.0113		
	3	143	2.156	0.064		
	4	60.2	1.780	0.129		
	5	10.8	1.034	0.225		

A plot is made of $\log \frac{c x}{c^{3 k}}$ (average) vs. $\frac{r^{2}}{x}$
It is seen that the slope of the line on the plot $=-\frac{v}{9.2 \mathrm{FD}}=-5.75$ or substituting FD $=+\frac{0.314}{9.2 \times 5.75}=0.00594$

But the intercept on the graph at $\frac{x^{2}}{x}=0$ is given by $\log _{10} \frac{V}{4 \pi F D}$
Intercept $=2.464=\log _{10} \frac{V}{4 \pi \mathrm{FD}}$ where V is the volume of flow/sec.cc.
Then $291=\frac{21.7}{4 \pi \mathrm{FD}}$
$\therefore F D=0.00594$
i.e. the values of FD as calculated from the slope and the intercept on the plot, give the same value for FD.

$$
\text { Hence } D=\frac{.00594}{. F}=\frac{.00594}{0.36}=0.0165 \mathrm{~cm}^{2} / \mathrm{sec}
$$

Centre-Ine Sampling Method. In some cases samples were taken on the centre-line of the tower only. Then: $\frac{C x}{C^{*}}=\frac{V}{4 \pi F D}$ thus, for a given value of V, it is only necessary to average the values of $\frac{C x}{C^{*}}$ for all the samples to find the best value of $F D$.

Table B

$\begin{aligned} & \text { Run } \\ & \text { No: } \end{aligned}$	Tube No:	C	X	0^{*}	$\frac{C x}{\text { c }}$	r	$\frac{r^{2}}{x}$
76	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 0.860 \\ & 0.230 \\ & 0.110 \\ & 0.020 \end{aligned}$	23.5	0.051	$\begin{aligned} & 364 \\ & 394 \\ & 105 \\ & 50.5 \\ & 9.17 \end{aligned}$	$\begin{gathered} 0 \\ 0.266 \\ 1.51 \\ 3.05 \\ 5.30 \end{gathered}$	$\begin{aligned} & 0 \\ & 0.0113 \\ & 0.064 \\ & 0.129 \\ & 0.225 \end{aligned}$
77	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4.38 \\ & 5.15 \\ & 3.70 \\ & 1.45 \\ & 0.44 \end{aligned}$	23.5	0.245	$\begin{aligned} & 418 \\ & 492 \\ & 354 \\ & 138 \\ & 42 \end{aligned}$	$\begin{gathered} 0 \\ 0.266 \\ 1.51 \\ 3.05 \\ 5.30 \end{gathered}$	$\begin{aligned} & 0 \\ & 0.0113 \\ & 0.064 \\ & 0.129 \\ & 0.225 \end{aligned}$
78	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 7.90 \\ & 5.10 \\ & 3.20 \\ & 2.63 \\ & 0.187 \end{aligned}$	23.5	0.675	$\begin{aligned} & 275 \\ & 178 \\ & 112 \\ & 91.6 \\ & 6.52 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.266 \\ & 1.51 \\ & 3.05 \\ & 5.30 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0113 \\ & 0.064 \\ & 0.129 \\ & 0.225 \end{aligned}$
79	$\begin{aligned} & 7 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.15 \\ & 1.93 \\ & 1.68 \\ & 0.63 \\ & 0.105 \end{aligned}$	23.5	0.46	$\begin{aligned} & 110 \\ & 98 \\ & 86 \\ & 32.2 \\ & 5.37 \end{aligned}$	$\begin{gathered} 0 \\ 0.266 \\ 1.51 \\ 3.05 \\ 5.30 \end{gathered}$	$\begin{aligned} & 0 \\ & 0.0113 \\ & 0.064 \\ & 0.124 \\ & 0.225 \end{aligned}$
80	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.30 \\ & 2.40 \\ & 1.15 \\ & 0.51 \\ & 0.035 \end{aligned}$	23.5	0.368	$\begin{aligned} & 340 \\ & 154 \\ & 74 \\ & 32.7 \\ & 2.24 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.266 \\ & 1.51 \\ & 3.05 \\ & 5.30 \end{aligned}$	$\begin{gathered} 0 \\ 0.0113 \\ 0.064 \\ 0.129 \\ 0.225 \end{gathered}$
81	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.07 \\ & 2.50 \\ & 1.62 \\ & 0.24 \\ & 0.015 \end{aligned}$	23.5	0.255	$\begin{aligned} & 470 \\ & 231 \\ & 150 \\ & 22.2 \\ & 1.39 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.266 \\ & 1.51 \\ & 3.05 \\ & 5.30 \end{aligned}$	$\begin{array}{\|c} 0 \\ 0.0113 \\ 0.064 \\ 0.129 \\ 0.225 \end{array}$
82	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.072 \\ & 0.63 \\ & 0.060 \\ & 0.020 \end{aligned}$	23.5	0.205	$\begin{array}{\|l\|} \hline 124 \\ 73 \\ 6.95 \\ 2.34 \end{array}$	$\begin{aligned} & 0 \\ & 0.266 \\ & 1.51 \\ & 3.05 \end{aligned}$	$$
83	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 0.995 \\ & 1.07 \\ & 0.545 \\ & 0.09 \end{aligned}$	23.5	0.135	$\begin{array}{\|l\|} \hline 216 \\ 176 \\ 189 \\ 96.3 \\ 15.9 \end{array}$	$\begin{gathered} 0 \\ 0.266 \\ 1.51 \\ 3.05 \\ 5.30 \end{gathered}$	$\begin{gathered} 0 \\ 0.0113 \\ 0.064 \\ 0.129 \\ 0.225 \end{gathered}$

Appendix H. Nomenclature, definitions and symbols.

A cross-sectional area of tower - sq. cms.
$A_{f} \quad$ factor to be used in Faking equation to correct for variations in ratio of particle diameter to tower diameter.
$\bar{C} \quad$ root mean square velocity of particle in random motion (in 3 dimensions).

C concentration of sample taken at point (x, r) $-\cdots-1000 \times$ (cc. of injected indicator solution per cc. of sample) (1.e relative $5 \mathrm{~s} / 1000$ standad)
mean concentration of total stream passing through tower-same units as C.
d particle diameter --cms.
dp nominal particle diameter (cms) for irregular shapes -g. Berl saddles.
D apparent diffusion co-efficient (sq. cms per sec.) as defined in Appendix C.
$D^{\prime} \quad$ co-efficient of molecular diffusion
E eddy diffusion coefficient.
$f \quad$ Fanning friction factor, as defined in Appendix B.
F fraction of overall volume of packing which is not occupied by the substance of the packing particles.
L. depth (cms) (measured parallel to axis of tower) of packing through which pressure drop is ΔP, dynes per sq. cm., when superficial velocity is v cms. per sec.
number of molecules (defined by context.)
number of spheres in unit overall volume of packing.
$\Delta P \quad$ pressure-drop (dynes per sq.cm., unless otherwise stated) through depth L cms. of packing at superficial velocity v cms. per sec.
distance of sampling-points from axis of tower (cms).
time (secs.)
mean linear velocity (in direction parallel to tower axis) of fluid through interstices of packing - cms per sec.
$v=V / A=$ volumetric rate of flow divided by cross-sectional area of tower, or superficial velocity of flow (ems. per sec.)
∇ volumetric rate of flow, or volume of fluid flowing through tower in unit time --cc. per sec.
\mathbf{x} distance of cross-sectional plane in which sample is taken from that of injection-point-cms. (See Appendix C).

Z collision frequency, or frequency with which particle in random motion changes direction.
ρ density of fluid - gms/cc.
$\mu \quad$ Viscosity of fluid - gmo/sec.-cm.

APPENDIX I.
 BIBIIOGRAPHY

1. Furnas, C. C. U. S. Bureau of Mines Bulletin 307 (1929)
2. Chilton, T. H. \& Colburn, A.P. Trans. A.I.Ch.E., XXVI pp. 178-196 (1931)
3. Meyer, W. G. and Fork, L. T., Trans. A. I. Ch. E, XXXII, 13-33, (1937).
4. Rabinowitz, B. and Roessel, T. B. Mixing Rate in Liquid Model Towers, S.B. Thesis, Chem. Eng. M.I.T. 1946.
5. Sherwood, T. K. and Towle W. L. Ind. and Eng. Chem. 31, 457, (1939).
6. Wilson, H. A. Proc. Cambridge Phil. Soc. 12, 406, 1904.
7. White, M. Trans. A. I. Ch. E. Vol. YXXI, (1936) p. 390.
8. Uchida, S. and Fujita, S. (i) J. Soc. Chem. Ind., Japan, 724B, 791B (1934).
9. Perry, J. H. Chemical Engineer Handbook 829, (1941)
10. Taylor G. I. (1) Proc. Roy.Soc. London A 159, 496 (1937)
(11)Proc. Roy.Soc. Bondon A 151, $421,1935$.
11. Karman, Th. von J. Aernaut. Sci I, 1, 1934.
12. Dryden, H. L. Ind. and Eng. Chem. 31, 416, 1939.

Eng.
13. Sherwood, T. K. and Woertz, B. B. Ind. and/Chem. 31, No. 8, August 1939.
14. Murphree, E. E. Ind. and Eng. Chem. 24, 727, 1932.
15. Goldstein, S. "Modern Developments in Fluid Dynamics", Vol. II,Oxford 1938.
16. Woertz, B. B. "Mass transfer by Eddy Diffusion" Sc. D. Thesis Chem. Eng. M.I.T. 1939.
17. Weddell, D. "Turbulent Mixing on Gas Flames and its Reproduction on Liquid Models" Sc. D. Thesis, Chem. Eng. M.I.T. 1941.
18. Hawthorne, W. R. "The wixing of Gas and Air in Flames", Sc.D. Thesis Chem. Eng. M.I.T. 1939.
19. Kalinske A.A. and Pien, C. L. Ind. and Eng. Chem. 36, 220-223,1944.
20. Prandtl, L. in W. F. Durand's Aerodynamic Theory Vol. III J. Springer 1935.
21. Stadig, J. "Heat transfer in a packed bed", S.B. Thesis Chem. Eng.M.I.T.1947.
22. Kennard E.H. "Kinetic theory of gases"(286)McGraw-Itill 1938

TABULATION OF RESULITS. GRAPRES.

FIGURES.

RUN NUMBERS INCLUSIVE	PACKING TYPEAND DIAMETER	$\begin{array}{\|c\|} \hline \text { DIFFUSION } \\ \text { COEFFICIENT } \\ -\mathrm{DMS}^{2} / \mathrm{sec} \\ \hline \end{array}$	FREE VOLUIE F	FLOW VELOCITY CMS/SEC	AXIAL DISTANCE FROM INJECTOR TO SAMPLING PLANE CMS	$\frac{\mathrm{Cx}}{\mathrm{C}^{*}}$					Average Value of $\frac{\mathrm{Cx}}{\mathrm{C}^{*}}$					Radial Sampling distance CMS					
						$\begin{array}{\|l\|} \hline \text { TUBE I } \\ \text { centra } \end{array}$	TUBE II	$\begin{aligned} & \text { TUBE } \\ & \text { III } \end{aligned}$		$\underset{\mathrm{V}}{\mathrm{TUBE}}$	TUBE I	TUBEE II	TUBE	TUBE IV	$\begin{gathered} \mathrm{TUBE} \\ \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { TUBE } \\ \text { I } \end{gathered}$	$\begin{array}{\|c} \text { TUBE } \\ \text { II } \end{array}$	$\begin{aligned} & \text { TUBE } \\ & \text { III } \end{aligned}$	$\begin{array}{\|c} \hline \text { TUBE } \\ \text { IV } \end{array}$	TUBE	
16-23	$\begin{gathered} 6 \mathrm{~mm} \\ \text { glass beads } \end{gathered}$	0.225	0.36	1.85												0	1.03	2.06	3.14	4.3	
16					12.9	76.6	62.5	15.9	3.64	1.01											
17						57.0	12.1	3.39	0.645	---											
18						99.5	59.0	17.3	0.555	---											
19						167	152	19.8	1.27	---											
16-19											100	71.4	14.1	1.55	---						
20					9.75	163	71.9	10.0	1.03	---											
21						103	42.6	16.6	0.545	-											
22						96.9	120	5.2	0.73	---											
23						131	70.5	6.8	2.1	---											
20-23											126	76	9.6	1.11	---						
24-31	$\begin{gathered} 6 \mathrm{~mm} \\ \text { glass beads } \end{gathered}$	0.0103	0.36	0.25												0	0.535	1.08	1.66	2.26	
24					12.3	352	24.4	46.2	0.79	---											
25						216	72.2	22.9	10.6	--											
26						297.5	124	38.9	1.4	---											
27						141.5	124	79.0	2.66	---											
$24-27$											249	200	40.1	3.92	---						
28					17.15	411	291	55.7	4.3	---											
29						387	230	129	---	---											
30						393	215	40.0	9.3	---											
31						361	24.4	222	21.0	---											
24-31											387	246	112	8.75							
32-40	$\mathrm{K}_{\mathrm{g}}^{\mathrm{mass}}$ beads	0.020	0.36	0.32																	
32					17.2	318	160	25.9	---	---											
- 33						332	151	100.0	---	----											
34						254	258	95	38.7	---											
35						241	183	99.0	49.5	---											
36						172	485	106	35	---											

GRAPIT VII

GRAPH $\overline{x I X}$

FIG: I

FIG: II Skirting and cutting paths.

FIG: III Mean lateral displacement on great-circle path $=d / 6$.

D1stgrbance of flow by
pacinin.

Watent manometer. Vig: VIT.

FIG: VIII.
Apparatus for measuring pressure-gradient through
packing.

