64 research outputs found

    Buzz: Face-to-Face Contact and the Urban Economy

    Get PDF
    This paper argues that existing models of urban concentrations are incomplete unless grounded in the most fundamental aspect of proximity; face-to-face contact. Face-to-face contact has four main features; it is an efficient communication technology; it can help solve incentive problems; it can facilitate socialization and learning; and it provides psychological motivation. We discuss each of these features in turn, and develop formal economic models of two of them. Face-to-face is particularly important in environments where information is imperfect, rapidly changing, and not easily codified, key features of many creative activities.Agglomeration, clustering, urban economics, face-to-face

    Genetic Resources – A new attempt at serving the community

    Get PDF
    Through the Horizon 2020 project 'GenRes Bridge' the new journal Genetic Resources was conceived to serve as a new cross-cutting platform for stakeholders and practitioners in genetic resources. Its ambition is to provide access to relevant information and tools for the monitoring, conservation, management, characterization and use of genetic resources, and thus to contribute to the FAO global plans of action on genetic resources. Conceived to fill the gaps left by the discontinuation of the journals Plant Genetic Resources Newsletter and Animal Genetic Resources, it aims at serving the genetic resources community worldwide and across sectors

    The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds

    Get PDF
    International audienceAbstractBackgroundIn France, implementation of genomic evaluations in dairy cattle breeds started in 2009 and this has modified the breeding schemes drastically. In this context, the goal of our study was to understand the impact of genomic selection on the genetic diversity of bulls from three French dairy cattle breeds born between 2005 and 2015 (Montbéliarde, Normande and Holstein) and the factors that are involved.MethodsWe compared annual genetic gains, inbreeding rates based on runs of homozygosity (ROH) and pedigree data, and mean ROH length within breeds, before and after the implementation of genomic selection.ResultsGenomic selection induced an increase in mean annual genetic gains of 50, 71 and 33% for Montbéliarde, Normande and Holstein bulls, respectively, and in parallel, the generation intervals were reduced by a factor of 1.7, 1.9 and 2, respectively. We found no significant change in inbreeding rate for the two national breeds, Montbéliarde and Normande, and a significant increase in inbreeding rate for the Holstein international breed, which is now as high as 0.55% per year based on ROH and 0.49% per year based on pedigree data (equivalent to a rate of 1.36 and 1.39% per generation, respectively). The mean ROH length was longer for bulls from the Holstein breed than for those from the other two breeds.ConclusionsWith the implementation of genomic selection, the annual genetic gain increased for bulls from the three major French dairy cattle breeds. At the same time, the annual loss of genetic diversity increased for Holstein bulls, possibly because of the massive use of a few elite bulls in this breed, but not for Montbéliarde and Normande bulls. The increase in mean ROH length in Holstein may reflect the occurrence of recent inbreeding. New strategies in breeding schemes, such as female donor stations and embryo transfer, and recent implementation of genomic evaluations in small regional breeds should be studied carefully in order to ensure the sustainability of breeding schemes in the future

    Impact of the use of cryobank samples in a selected cattle breed: a simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High selection pressure on domestic cattle has led to an undesirable increase in inbreeding, as well as to the deterioration of some functional traits which are indirectly selected. Semen stored in a cryobank may be a useful way to redirect selection or limit the loss of genetic diversity in a selected breed. The purpose of this study was to analyse the efficiency of current cryobank sampling methods, by investigating the benefits of using cryopreserved semen in a selection scheme several generations after the semen was collected.</p> <p>Methods</p> <p>The theoretical impact of using cryopreserved semen in a selection scheme of a dairy cattle breed was investigated by simulating various scenarios involving two negatively correlated traits and a change in genetic variability of the breed.</p> <p>Results</p> <p>Our results indicate that using cryopreserved semen to redirect selection will have an impact on negatively selected traits only if it is combined with major changes in selection objectives or practices. If the purpose is to increase genetic diversity in the breed, it can be a viable option.</p> <p>Conclusions</p> <p>Using cryopreserved semen to redirect selection or to improve genetic diversity should be carried out with caution, by considering the pros and cons of prospective changes in genetic diversity and the value of the selected traits. However, the use of genomic information should lead to more interesting perspectives to choose which animals to store in a cryobank and to increase the value of cryobank collections for selected breeds.</p

    VarGoats project : a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity

    Get PDF
    Since their domestication 10,500 years ago, goat populations with distinctive genetic backgrounds have adapted to a broad variety of environments and breeding conditions. The VarGoats project is an international 1000-genome resequencing program designed to understand the consequences of domestication and breeding on the genetic diversity of domestic goats and to elucidate how speciation and hybridization have modeled the genomes of a set of species representative of the genus Capra. A dataset comprising 652 sequenced goats and 507 public goat sequences, including 35 animals representing eight wild species, has been collected worldwide. We identified 74,274,427 single nucleotide polymorphisms (SNPs) and 13,607,850 insertion-deletions (InDels) by aligning these sequences to the latest version of the goat reference genome (ARS1). A Neighbor-joining tree based on Reynolds genetic distances showed that goats from Africa, Asia and Europe tend to group into independent clusters. Because goat breeds from Oceania and Caribbean (Creole) all derive from imported animals, they are distributed along the tree according to their ancestral geographic origin. We report on an unprecedented international effort to characterize the genome-wide diversity of domestic goats. This large range of sequenced individuals represents a unique opportunity to ascertain how the demographic and selection processes associated with post-domestication history have shaped the diversity of this species. Data generated for the project will also be extremely useful to identify deleterious mutations and polymorphisms with causal effects on complex traits, and thus will contribute to new knowledge that could be used in genomic prediction and genome-wide association studies

    Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils

    Get PDF
    Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)–0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter
    corecore