12 research outputs found

    Do positive and negative temperament traits interact in predicting risk for depression? A resting EEG study of 329 preschoolers

    No full text
    Researchers have long been interested in whether particular temperamental traits in childhood connote risk for depressive disorders. For example, children characterized as having high negative emotionality (NE; sadness, fear, anger) and low positive emotionality (PE; anhedonia, listlessness, and lack of enthusiasm) are hypothesized to be at risk for depression. Few studies, however, have examined whether (and how) these two temperamental dimensions interact to confer risk. In a sample of 329 preschoolers, the present study addressed this question by examining the relation between PE and NE and asymmetry in resting EEG activity in frontal and posterior regions, which are putative biomarkers for depression. Using a laboratory battery to define temperament, we found an interaction of PE and NE on posterior asymmetry. Specifically, when PE was high, NE was associated with greater relative right activity. When PE was low, NE was not related to posterior asymmetry. These results were driven by differences in EEG activity in right posterior regions, an area associated with emotional processing and arousal, and were specific to girls. We found no relation between temperament and frontal asymmetry. These findings suggest that, at least for girls, PE and NE may have an interactive effect on risk for depression

    Do positive and negative temperament traits interact in predicting risk for depression? A resting EEG study of 329 preschoolers

    No full text
    Researchers have long been interested in whether particular temperamental traits in childhood connote risk for depressive disorders. For example, children characterized as having high negative emotionality (NE; sadness, fear, anger) and low positive emotionality (PE; anhedonia, listlessness, and lack of enthusiasm) are hypothesized to be at risk for depression. Few studies, however, have examined whether (and how) these two temperamental dimensions interact to confer risk. In a sample of 329 preschoolers, the present study addressed this question by examining the relation between PE and NE and asymmetry in resting EEG activity in frontal and posterior regions, which are putative biomarkers for depression. Using a laboratory battery to define temperament, we found an interaction of PE and NE on posterior asymmetry. Specifically, when PE was high, NE was associated with greater relative right activity. When PE was low, NE was not related to posterior asymmetry. These results were driven by differences in EEG activity in right posterior regions, an area associated with emotional processing and arousal, and were specific to girls. We found no relation between temperament and frontal asymmetry. These findings suggest that, at least for girls, PE and NE may have an interactive effect on risk for depression
    corecore