63 research outputs found
Evolution of the TOR Pathway
The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes
Microdissection of Shoot Meristem Functional Domains
The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize
Managing Portfolio Risk Using Multivariate Extreme Value Methods
This paper provides a strategy for portfolio risk management by inferring extreme movements in financial markets. The core of the provided strategy is a statistical model for the joint tail distribution that attempts to capture accurately the data generating process through an extremal modelling for the univariate margins and the multivariate dependence structure. It takes into account the asymmetric behavior of extreme negative and positive returns, the heterogeneous temporal and cross-sectional lead-lag extremal dependencies among the portfolio constituents. The strategy facilitates scenario generation for future returns, estimation of portfolio profit-and-loss distribution and calculation of risk measures, and hence, enabling us to answer several questions of economic interest. We illustrate the usefulness of our proposal by an application to stock market returns for the G5 economies
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Adult Groove Ratings for Senn (2020) Stimuli
This project contains adult groove ratings obtained for stimuli described by Senn et al. (2020). Attached are 5 csv files: like.csv, familiar.csv, and groove.csv are ratings of liking, familiarity, and wanting to move to stimuli, respectively. grooveRate.csv has all 3 types of ratings aggregated together for each stimulus. Stimuli.csv has stimulus information and comes directly from Senn et al. (2020). Finally, there is also an R script attached which visualizes these data and calculates some basic correlations. Please contact [email protected] with any concerns or questions
Recommended from our members
Simulated microgravity produces attenuated baroreflex-mediated pressor, chronotropic, and inotropic responses in mice
Whether myocardial contractile impairment contributes to orthostatic intolerance (OI) is controversial. Accordingly, we used transient bilateral carotid occlusion (TBCO) to compare the in vivo pressor, chronotropic, and inotropic responses (parts 1 and 2) to open-loop selective carotid baroreceptor unloading in anesthetized mice. In part 3, in vitro myocyte responses to isoproterenol in mice exposed to hindlimb unweighting (HLU) for approximately 2 wk were determined. Heart rate (HR) and mean arterial pressure (MAP) responses to TBCO were measured. In control mice, TBCO increased HR (15 +/- 2 beats/min, P < 0.05) and MAP (17 +/- 2 mmHg, P < 0.05). These responses were markedly potentiated in denervated control (DC) mice, in which the aortic depressor nerve and sympathetic trunk were sectioned before measurement. Baroreflex responses to TBCO were eliminated by blockade with hexamethonium bromide (10 microg/kg). In HLU (denervated) mice, HR and MAP responses were reduced approximately 70% compared with DC mice. In part 2, myocardial contractile responses to TBCO were measured with a left ventricular micromanometer-conductance catheter. TBCO in DC mice increased the slope of the end-systolic pressure-volume relation (end-systolic elastance) by 86 +/- 13%. This inotropic response was attenuated (14 +/- 10%, P < 0.005) after HLU. In part 3, contractile responses to isoproterenol were impaired in myocytes isolated from HLU mice. In conclusion, selective carotid baroreceptor unloading stimulates HR, blood pressure, and myocardial contractility, and HLU attenuates each response. These findings have important implications for the management of OI in astronauts, the elderly, and individuals subjected to prolonged bed rest
- …